首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   14篇
  国内免费   1篇
测绘学   7篇
大气科学   17篇
地球物理   76篇
地质学   119篇
海洋学   36篇
天文学   113篇
综合类   1篇
自然地理   28篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   9篇
  2016年   7篇
  2015年   4篇
  2014年   11篇
  2013年   22篇
  2012年   3篇
  2011年   13篇
  2010年   12篇
  2009年   16篇
  2008年   15篇
  2007年   13篇
  2006年   13篇
  2005年   13篇
  2004年   22篇
  2003年   21篇
  2002年   14篇
  2001年   13篇
  2000年   14篇
  1999年   11篇
  1998年   14篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   2篇
  1989年   8篇
  1988年   2篇
  1987年   9篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   3篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
41.
Paleocene volcanic rocks in West Greenland and Baffin Island were among the first products of the Iceland mantle plume, forming part of a larger igneous province that is now submerged beneath the northern Labrador Sea. A 40Ar/39Ar dating study shows that volcanism commenced in West Greenland between 60.9 and 61.3 Ma and that 80% of the Paleocene lava pile was erupted in 1 million years or less (weighted mean age of 60.5±0.4 Ma). Minimum estimates of magma production rates (1.3×10−4 km3 year−1 km−1) are similar to the present Iceland rift, except for the uppermost part of the Paleocene volcanic succession where the rate decreases to <0.7×10−4 km3 year−1 km−1 (rift). The timing of onset of volcanism in West Greenland coincides with the opening of the northern Labrador Sea and is also strikingly similar to the age of the oldest Tertiary volcanic rocks from offshore SE Greenland and the British–Irish province. This is interpreted as manifesting the impact and rapid (>1 m/year) lateral spreading of the Iceland plume head at the base of the Greenland lithosphere at 62 Ma. We suggest that the arrival, or at least a major increase in the flux, of the Iceland mantle plume beneath Greenland was a contributing factor in the initiation of seafloor spreading in the northern Labrador Sea. Our study has also revealed a previously unrecognised Early Eocene volcanic episode in West Greenland. This magmatism may be related to movement on the transform Ungava Fault System which transferred drifting from the Labrador Sea to Baffin Bay. A regional change in plate kinematics at 55 Ma, associated with the opening of the North Atlantic, would have caused net extension along parts of this fault. This would have resulted in decompression and partial melting of the underlying asthenosphere. The source of the melts for the Eocene magmatism may have been remnants of still anomalously hot Iceland plume mantle which were left stranded beneath the West Greenland lithosphere in the Early Paleocene.  相似文献   
42.
This paper presents the sediment, landform and dynamic context of four avalanche-fed valley glaciers (Khumbu, Imja, Lhotse and Chukhung) in the Mount Everest (Sagarmatha) region of Nepal. All four glaciers have a mantle of debris dominated by sandy boulder-gravel that suppresses melting to an increasing degree towards the snout, leading to a progressive reduction in the overall slope of their longitudinal profile. Prominent lateral–terminal moraine complexes, also comprising sandy bouldergravel, enclose the glaciers. These terminal moraines originally grew by accretion of multiple sedimentary facies of basal glacial and supraglacial origin, probably by folding and thrusting when the glaciers were more dynamic during the Little Ice Age. The four glaciers are in various stages of recession, and demonstrate a range of scenarios from down-wasting of the glacier tongue, through morainedammed lake development, to post-moraine-dam breaching. Khumbu Glacier is at the earliest stage of supraglacial pond formation and shows no sign yet of developing a major lake, although one is likely to develop behind its >250 m high composite terminal moraine. Imja Glacier terminates in a substantial body of water behind a partially ice-cored moraine dam (as determined from geophysical surveys), but morphologically appears unlikely to be an immediate threat. Chukhung Glacier already has a breached moraine and a connected debris fan, and therefore no longer poses a threat. Lhotse Glacier has an inclined, free-draining tongue that precludes hazardous lake development. From the data assembled, a conceptual model, applicable to other Himalayan glaciers, is proposed to explain the development of large, lateral-terminal moraine complexes and associated potentially hazardous moraine dams. – 2008 Elsevier Ltd. All rights reserved.  相似文献   
43.
44.
Ordovician igneous rocks in the western Acatlán Complex (Olinalá area) of southern Mexico include a bimodal igneous suite that intrudes quartzites and gneisses of the Zacango Unit, and all these rocks were polydeformed and metamorphosed in the amphibolite facies during the Devono-Carboniferous. The Ordovician igneous rocks consist of the penecontemporaneous amphibolites, megacrystic granitoids and leucogranite, the latter dated at ca. 464 Ma. Geochemical and Sm–Nd data indicate that the amphibolites have a differentiated tholeiitic signature, and that its mafic protoliths formed in an extensional setting transitional between within-plate and ocean floor. The amphibolites are variably contaminated by a Mesoproterozoic crustal source, inferred to be the Oaxacan basement exposed in the adjacent terrane. The most primitive samples have εNdt (t = 465 Ma) values significantly below that of the contemporary depleted mantle and were probably derived from the sub-continental lithospheric mantle. The megacrystic granites were most probably derived by partial melting of an arc crustal source (similar to the Oaxacan Complex) and triggered by the ascent of mafic magma from the lithospheric mantle. Sm–Nd isotopic signatures suggest that metasedimentary rocks from Zacango Unit were derived from adjacent Oaxacan Complex. Trace elements relationships (e.g. La/Th vs. Hf) and REE patterns suggest provenance in felsic-intermediate igneous rocks with a calc-alkaline signature. The Ordovician bimodal magmatism is inferred to have resulted from rifting on the southern flank of the Rheic Ocean and is an expression of a major rifting event that occurred along much of the northern Gondwanan margin in the Ordovician.  相似文献   
45.
In recent years, newspaper research has been streamlined by digitisation and online hosting by PapersPast. This paper tests the reliability and credibility of reporting of extreme weather and climatic events through PapersPast to determine if newspaper research of past climate can be further streamlined. Searches were conducted through four early‐20th‐century Auckland newspapers, where counts of articles returned by key‐word searches for particular periods were compared against periods of known extremes. We find that blind searches have only limited potential in identifying extreme weather and climatic events and that they are no substitute for thorough analyses of documentary sources.  相似文献   
46.
The possibility of recrystallization is a long‐standing barrier to deciphering the genetic origin of dolomites. There is often uncertainty regarding whether or not characteristics of ancient dolomites are primary or the consequence of later recrystallization unrelated to the original dolomitization event. Results from 65 new high‐temperature dolomite synthesis experiments (1 m , 1·0 Mg/Ca ratio solutions at 218°C) demonstrate dolomite recrystallization affecting stoichiometry, cation ordering and nanometre‐scale surface texture. The data support a model of dolomitization that proceeds by a series of four unique phases of replacement and recrystallization, which occur by various dissolution–precipitation reactions. During the first phase (induction period), no dolomite forms despite favourable conditions. The second phase (replacement period) occurs when Ca‐rich dolomite products, with a low degree of cation ordering, rapidly replace calcite reactants. During the replacement period, dolomite stoichiometry and the degree of cation ordering remain constant, and all dolomite crystal surfaces are covered by nanometre‐scale growth mounds. The third phase (primary recrystallization period), which occurs in the experiments between 97% and 100% dolomite, is characterized by a reduced replacement rate but concurrent increases in dolomite stoichiometry and cation ordering. The end of the primary recrystallization period is marked by dolomite crystal growth surfaces that are covered by flat, laterally extensive layers. The fourth phase of the reaction (secondary recrystallization period) occurs when all calcite is consumed and is characterized by stoichiometric dolomite with layers as well as a continued increase in the degree of cation ordering with time. Inferences of recrystallization, in natural dolomite, based on cation order or stoichiometry of dolomite, usually depend on assumptions about the precursor dolomite subjected to recrystallization. If it is assumed that the experimental evidence presented here is applicable to natural, low‐temperature dolomites, then the presence of mounds is direct evidence of a lack of recrystallization and the presence of layers is direct evidence of recrystallization.  相似文献   
47.
Uturuncu is a dormant volcano in the Altiplano of SW Bolivia. A present day ~70 km diameter interferometric synthetic aperture radar (InSAR) anomaly roughly centred on Uturuncu’s edifice is believed to be a result of magma intrusion into an active crustal pluton. Past activity at the volcano, spanning 0.89 to 0.27 Ma, is exclusively effusive and almost all lavas and domes are dacitic with phenocrysts of plagioclase, orthopyroxene, biotite, ilmenite and Ti-magnetite plus or minus quartz, and microlites of plagioclase and orthopyroxene set in rhyolitic groundmass glass. Plagioclase-hosted melt inclusions (MI) are rhyolitic with major element compositions that are similar to groundmass glasses. H2O concentrations plotted versus incompatible elements for individual samples describe a trend typical of near-isobaric, volatile-saturated crystallisation. At 870 °C, the average magma temperature calculated from Fe–Ti oxides, the average H2O of 3.2 ± 0.7 wt% and CO2 typically <160 ppm equate to MI trapping pressures of 50–120 MPa, approximately 2–4.5 km below surface. Such shallow storage precludes the role of dacite magma emplacement into pre-eruptive storage regions as being the cause of the observed InSAR anomaly. Storage pressures, whole-rock (WR) chemistry and phase assemblage are remarkably consistent across the eruptive history of the volcano, although magmatic temperatures calculated from Fe–Ti oxide geothermometry, zircon saturation thermometry using MI and orthopyroxene-melt thermometry range from 760 to 925 °C at NNO ± 1 log. This large temperature range is similar to that of saturation temperatures of observed phases in experimental data on Uturuncu dacites. The variation in calculated temperatures is attributed to piecemeal construction of the active pluton by successive inputs of new magma into a growing volume of plutonic mush. Fluctuating temperatures within the mush can account for sieve-textured cores and complex zoning in plagioclase phenocrysts, resorption of quartz and biotite phenocrysts and apatite microlites. That Fe–Ti oxide temperatures vary by ~50–100 °C in a single thin section indicates that magmas were not homogenised effectively prior to eruption. Phenocryst contents do not correlate with calculated magmatic temperatures, consistent with crystal entrainment from the mush during magma ascent and eruption. Microlites grew during ascent from the magma storage region. Variability in the proportion of microlites is attributed to differing ascent and effusion rates with faster rates in general for lavas >0.5 Ma compared to those <0.5 Ma. High microlite contents of domes indicate that effusion rates were probably slowest in dome-forming eruptions. Linear trends in WR major and trace element chemistries, highly variable, bimodal mineral compositions, and the presence of mafic enclaves in lavas demonstrate that intrusion of more mafic magmas into the evolving, shallow plutonic mush also occurred further amplifying local temperature fluctuations. Crystallisation and resorption of accessory phases, particularly ilmenite and apatite, can be detected in MI and groundmass glass trace element covariation trends, which are oblique to WRs. Marked variability of Ba, Sr and La in MI can be attributed to temperature-controlled, localised crystallisation of plagioclase, orthopyroxene and biotite within the evolving mush.  相似文献   
48.
49.
We explore the rich globular cluster (GC) system of the nearby Sa galaxy M104, the 'Sombrero' (NGC 4594), using archive Wide Field Planetary Camera 2 data. The GC colour distribution is found to be bimodal at the >99 per cent confidence level, with peaks at     and     . The inferred metallicities are very similar to those of GCs in our Galaxy and M31. However, the Sombrero reveals a much enhanced number of red (metal-rich) GCs compared to other well-studied spirals. Because the Sombrero is dominated by a huge bulge and only has a modest disc, we associate the two subpopulations with the halo and bulge components, respectively. Thus our analysis supports the view that the metal-rich GCs in spirals are associated with the bulge rather than with the disc. The Sombrero GCs have typical effective (half-light) radii of ∼2 pc with the red ones being ∼30 per cent smaller than the blue ones. We identify many similarities between the GC system of the Sombrero and those of both late-type spirals and early-type galaxies. Thus both the GC system and the Hubble type of the Sombrero galaxy appear to be intermediate in their nature.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号