首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   10篇
测绘学   2篇
地球物理   27篇
地质学   21篇
海洋学   8篇
天文学   25篇
综合类   1篇
自然地理   13篇
  2022年   3篇
  2021年   3篇
  2020年   8篇
  2019年   2篇
  2018年   7篇
  2017年   6篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
61.
62.
Recent changes along the margins of the Antarctic Peninsula, such as the collapse of the Wilkins Ice Shelf, have highlighted the effects of climatic warming on the Antarctic Peninsula Ice Sheet (APIS). However, such changes must be viewed in a long-term (millennial-scale) context if we are to understand their significance for future stability of the Antarctic ice sheets. To address this, we present nine new cosmogenic 10Be exposure ages from sites on NW Alexander Island and Rothschild Island (adjacent to the Wilkins Ice Shelf) that provide constraints on the timing of thinning of the Alexander Island ice cap since the last glacial maximum. All but one of the 10Be ages are in the range 10.2–21.7 ka, showing a general trend of progressive ice-sheet thinning since at least 22 ka until 10 ka. The data also provide a minimum estimate (490 m) for ice-cap thickness on NW Alexander Island at the last glacial maximum. Cosmogenic 3He ages from a rare occurrence of mantle xenoliths on Rothschild Island yield variable ages up to 46 ka, probably reflecting exhumation by periglacial processes.  相似文献   
63.
In shallow water the frequency domain controlled source electromagnetic method is subject to airwave saturation that strongly limits the sensitivity to resistive hydrocarbon targets at depth. It has been suggested that time‐domain CSEM may offer an improved sensitivity and resolution of these deep targets in the presence of the airwave. In order to examine and test these claims, this work presents a side‐by‐side investigation of both methods with a main focus on practical considerations, and how these effect the resolution of a hydrocarbon reservoir. Synthetic noisy data for both time‐domain and frequency domain methods are simulated using a realistic frequency dependent noise model and frequency dependent scaling for representative source waveforms. The synthetic data studied here include the frequency domain response from a compact broadband waveform, the time‐domain step‐response from a low‐frequency square wave and the time‐domain impulse response obtained from pseudo‐random binary sequences. These data are used in a systematic resolution study of each method as a function of water‐depth, relative noise and stacking length. The results indicate that the broadband frequency domain data have the best resolution for a given stacking time, whereas the time‐domain data require prohibitively longer stacking times to achieve similar resolution.  相似文献   
64.
It can be advantageous to revisit coring locations in lakes years after an initial paleolimnological study is completed, to assess environmental changes in the intervening time interval. We revisited sediment core sites in Lake Pepin (Minnesota, Wisconsin) more than a decade after an original set of 10 cores was collected, dated radiometrically, and studied in 1996. Prominent magnetic susceptibility features were used to align the new core set with the older set, such that traditional radiometric dating was not necessary to obtain a chronology for the new cores. The procedure used to align the two core sets accounted for compaction of former surface sediments by burial with new sediment. The amount of new sediment, mercury, and phosphorus accumulated at each core site was determined and extrapolated to the depositional area of the lake to estimate recent (1996–2008) whole-basin loads. Recent sediment accumulation in Lake Pepin compared well (within 3%) with monitored inflow data from a gauging station on the upper Mississippi River just before it enters the lake. Bulk sediment accumulation rate remained very high (772,000 t/year) for the recent period (1996–2008), down slightly from the peak in 1990–1996 (876,000 t/year), and almost an order of magnitude above pre-settlement rates. Total phosphorus deposition remained constant since a peak in the 1960s, but was also well above pre-settlement rates. Mercury continued its precipitous decline since peaking in the 1960s.  相似文献   
65.
We use 10Be surface exposure dating to construct a high-resolution chronology of glacial fluctuations in the Sierra Nevada, California. Most previous studies focused on individual glaciated valleys, whereas our study compares chronologies developed throughout the range to identify regional patterns in the timing of glacier response to major climate changes. Sites throughout the range indicate Last Glacial Maximum retreat at 18.8 ± 1.9 ka (2σ) that suggests rather consistent changes in atmospheric variables, e.g., temperature and precipitation, throughout the range. The penultimate glacial retreat occurred at ca 145 ka. Our data suggest that the Sierra Nevada landscape is dominated by glacial features deposited during marine isotope stage (MIS) 2 and MIS 6. Deposits of previously recognized glaciations between circa 25 and 140 ka, e.g., MIS 4, Tenaya, early Tahoe, cannot be unequivocally identified. The timing of Sierra Nevada glacial retreat correlates well with other regional paleoclimate proxies in the Sierra Nevada, but differs significantly from paleoclimate proxies in other regions. Our dating results indicate that the onset of LGM retreat occurred several thousand years earlier in the Sierra Nevada than some glacial records in the western US.  相似文献   
66.
Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone–Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 104–105 year timescales.At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year? 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/?0.1 mm year? 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3–5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/?0.3 mm year? 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year? 1). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt.A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection, extension is accommodated within a diffuse zone of normal and oblique faults, with extension rates increasing northward on the Fish Lake Valley fault. Where faults of the Eastern California Shear Zone terminate northward into the Mina Deflection, extension rates increase northward along the Sierra Nevada frontal fault zone to ~ 0.7 mm year? 1 in northern Mono Basin. This spatial pattern suggests that extension is transferred from more easterly fault systems, e.g., Fish Lake Valley fault, and localized on the Sierra Nevada frontal fault zone as the Eastern California Shear Zone–Walker Lane belt faulting is transferred through the Mina Deflection.  相似文献   
67.
Identification of the pumping influences at monitoring wells caused by spatially and temporally variable water supply pumping can be a challenging, yet an important hydrogeological task. The information that can be obtained can be critical for conceptualization of the hydrogeological conditions and indications of the zone of influence of the individual pumping wells. However, the pumping influences are often intermittent and small in magnitude with variable production rates from multiple pumping wells. While these difficulties may support an inclination to abandon the existing dataset and conduct a dedicated cross‐hole pumping test, that option can be challenging and expensive to coordinate and execute. This paper presents a method that utilizes a simple analytical modeling approach for analysis of a long‐term water level record utilizing an inverse modeling approach. The methodology allows the identification of pumping wells influencing the water level fluctuations. Thus, the analysis provides an efficient and cost‐effective alternative to designed and coordinated cross‐hole pumping tests. We apply this method on a dataset from the Los Alamos National Laboratory site. Our analysis also provides (1) an evaluation of the information content of the transient water level data; (2) indications of potential structures of the aquifer heterogeneity inhibiting or promoting pressure propagation; and (3) guidance for the development of more complicated models requiring detailed specification of the aquifer heterogeneity.  相似文献   
68.
High levels of U (up to 5570 μg/L) have been discovered in well waters near Simpsonville, South Carolina, USA. In order to characterize the mineralogical source of the U and possible structural controls on its presence, a deep (214 m) well was cored adjacent to one of the enriched wells. The highest gamma-ray emissions in the recovered core occur in coarse biotite granite at a depth just below 52 m. A slickenlined fault plane at 48.6 m and narrow pegmatite layers at depths of 113, 203 and 207 m also yield high gamma-ray counts. Thin sections were made from the above materials and along several subvertical healed fractures. Uraninite and coffinite are the principal U-rich minerals in the core. Other U-bearing minerals include thorite and thorogummite, monazite, zircon and allanite. Primary uraninite occurs in the biotite granite and in pegmatite layers. Secondary coffinite is present as tiny (<5 μm) crystals dispersed along fractures in the granite and pegmatites. Coffinite also occurs along the slickenlined fault plane, where it is associated with calcite and calcic zeolite and also replaces allanite. Coffinite lacks radiogenic Pb, hence is considerably younger than the uraninite.Dissolution of partially oxidized Ca-rich uraninite occurring in the surficial biotite granite (or secondary coffinite in fracture zones) is likely the main source for the current high levels of U in nearby area wells. The high-U well waters have a carbonate signature, consistent with pervasive calcite vein mineralization in the core. Aqueous speciation calculations suggest U transport as an uranyl (U6+) hydroxyl-carbonate complex. Later reduction resulted in secondary precipitation along fractures as a U4+ mineral (i.e., coffinite).  相似文献   
69.
Upward discharge to surface water bodies can be quantified using analytical models based on temperature–depth (T-z) profiles. The use of sediment T-z profiles is attractive as discharge estimates can be obtained using point-in-time data that are collected inexpensively and rapidly. Previous studies have identified that T-z methods can only be applied at times of the year when there is significant difference between the streambed–water interface and deeper sediment temperatures (e.g., winter and summer). However, surface water temperatures also vary diurnally, and the influence of these variations on discharge estimates from T-z methods is poorly understood. For this study, synthetic T-z profiles were generated numerically using measured streambed interface temperature data to assess the influence of diurnal temperature variations on discharge estimation and provide insight into the suitable application of T-z methods. Results show that the time of day of data collection can have a substantial influence on vertical flux estimates using T-z methods. For low groundwater discharge fluxes (e.g., 0.1 m d−1), daily transience in streambed temperatures led to relatively large errors in estimated flow magnitude and direction. For higher discharge fluxes (1.5 m d−1), the influence of transient streambed temperatures on discharge estimates was strongly reduced. Discharge estimates from point-in-time T-z profiles were most accurate when the uppermost point in the T-z profile was near the bed interface daily mean (two time periods daily). Where temperature time series data are available, daily averaged T-z profiles can produce accurate discharge estimates across a wide range of discharge rates. Seasonality in shallow groundwater temperature generally had a negligible influence on vertical flow estimates. These findings can be used to plan field campaigns and provide guidance on the optimal application of T-z methods to quantify vertical groundwater discharge to surface water bodies.  相似文献   
70.
The purposes of this study, conducted at the Mojave Global Change Facility in Nevada, USA, were to examine whether, and to what extent, spatial structure in soil physical properties would manifest as similar spatial structure in hydraulic properties and in spatial differences of evapotranspiration (ET) predictions. Soil samples were collected from 0 to 5 and 5 to 10 cm depths at each of 96 test plots. Hydraulic properties were estimated using textural properties and bulk density in the pedotransfer function method and then examined for spatial structure using variogram analysis. Results show a fining of texture at both depths in the northeast (downslope) quadrant, which led to higher water-holding capacity. Weak spatial structure was observed for most properties (ranges ~75 m). Hydraulic property data were then used as input to a one-dimensional numerical model (HYDRUS-1D) applied at each of the 96 sites for 159 days. Four different shrub cover percentages (0, 10, 20, and 30%) were used. The results showed a predominant soil evaporation-dominated water balance in the northeast quadrant of the site, regardless of plant cover. Elsewhere, plant transpiration was more dominant as percent cover decreased. Results revealed the important role that soil hydraulic properties play in near-surface water balance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号