首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   27篇
  国内免费   7篇
测绘学   5篇
大气科学   26篇
地球物理   70篇
地质学   181篇
海洋学   20篇
天文学   56篇
综合类   2篇
自然地理   67篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   14篇
  2020年   19篇
  2019年   14篇
  2018年   12篇
  2017年   16篇
  2016年   22篇
  2015年   17篇
  2014年   15篇
  2013年   31篇
  2012年   25篇
  2011年   36篇
  2010年   21篇
  2009年   18篇
  2008年   27篇
  2007年   11篇
  2006年   17篇
  2005年   14篇
  2004年   14篇
  2003年   7篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1983年   2篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1969年   1篇
  1962年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
151.
Tropical instability waves (TIWs) are not easily simulated by ocean circulation models primarily because such waves are very sensitive to wind forcing. In this study, we investigate the impact of assimilating sea surface height (SSH) observations on the control of TIWs in an observing system simulation experiment (OSSE) context based on a regional model configuration of the tropical Atlantic. A Kalman filtering method with suitable adaptations is found to be successful when altimetric data are assimilated in conjunction with sea surface temperature and some in situ temperature/salinity profiles. In this rather realistic system, the TIW phase is roughly controlled with a single nadir observing satellite. However, a right correction of the TIW structure and amplitude requires at least two nadir observing satellites or a wide swath observing satellite. The significant impact of orbital parameters is also demonstrated: in particular, the Jason or GFO satellite orbits are found to be more suitable than the ENVISAT orbit. More generally, it is found that as soon as adequate sub-sampling exists (with periods of 5–10?days), the length of the repetitivity cycle of orbits does not have a significant impact.  相似文献   
152.
With the second largest outflow in the world and one of the widest hydrological basins, the Congo River is of a major importance both locally and globally. However, relatively few studies have been conducted on its hydrology, as compared to other great rivers such as the Amazon, Nile, Yangtze, or Mississippi. The goal of this study is therefore to help fill this gap and provide the first high-resolution simulation of the Congo river-estuary-coastal sea continuum. To this end, we are using a discontinuous-Galerkin finite element marine model that solves the two-dimensional depth-averaged shallow water equations on an unstructured mesh. To ensure a smooth transition from river to coastal sea, we have considered a model that encompasses both hydrological and coastal ocean processes. An important difficulty in setting up this model was to find data to parameterize and validate it, as it is a rather remote and understudied area. Therefore, an important effort in this study has been to establish a methodology to take advantage of all the data sources available including nautical charts that had to be digitalized. The model surface elevation has then been validated with respect to an altimetric database. Model results suggest the existence of gyres in the vicinity of the river mouth that have never been documented before. The effect of those gyres on the Congo River dynamics has been further investigated by simulating the transport of Lagrangian particles and computing the water age.  相似文献   
153.
In the fall of 2001, an intense thunderstorm in southwest Montana triggered many debris flows in the burned area of Sleeping Child Creek. In most instances, the debris flows cut deep gullies into previously unchannelized colluvial hollows and deposited large volumes of sediment onto the valley floor. The presence of rill networks above the gullies as well as the absence of landslide features indicate that the gullies were scoured by progressively bulked debris flows, a process in which dilute surface runoff becomes increasingly more laden with sediment until it transforms into a debris flow. In this contribution, we present a morphometric analysis of six of the gullies to better understand this relatively understudied process. We find that the locations of the rill heads and gully heads conform to slope-area thresholds that are characteristic of erosion by overland flow. Our data also suggest that the volumes of the debris flows increase exponentially with normalized drainage area, thus lending support to an assumption used in a recently proposed debris flow incision law. Finally, the debris flow fans have been relatively unaltered since deposition, suggesting that the valley may be currently aggrading while the hillslopes are being denuded.  相似文献   
154.
We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging systems designed to detect CMEs in the heliosphere, in particular, for the first time, observing the propagation of such events along the Sun – Earth line, that is, those directed towards Earth. At the time of writing the STEREO spacecraft are still close to the Earth and the full advantage of the HI dual-imaging has yet to be realised. However, even these early results show that despite severe technical challenges in their design and implementation, the HI instruments can successfully detect CMEs in the heliosphere, and this is an extremely important milestone for CME research. For the principal event being analysed here we demonstrate an ability to track a CME from the corona to over 40 degrees. The time – altitude history shows a constant speed of ascent over at least the first 50 solar radii and some evidence for deceleration at distances of over 20 degrees. Comparisons of associated coronagraph data and the HI images show that the basic structure of the CME remains clearly intact as it propagates from the corona into the heliosphere. Extracting the CME signal requires a consideration of the F-coronal intensity distribution, which can be identified from the HI data. Thus we present the preliminary results on this measured F-coronal intensity and compare these to the modelled F-corona of Koutchmy and Lamy (IAU Colloq. 85, 63, 1985). This analysis demonstrates that CME material some two orders of magnitude weaker than the F-corona can be detected; a specific example at 40 solar radii revealed CME intensities as low as 1.7×10−14 of the solar brightness. These observations herald a new era in CME research as we extend our capability for tracking, in particular, Earth-directed CMEs into the heliosphere.  相似文献   
155.
156.
Abstract

A comprehensive hydro-ecological investigation was conducted to determine the ecological response of increased groundwater withdrawals from the Kirkwood-Cohansey aquifer system, an important source of water supply in southern New Jersey, USA. Collocated observations were made of aquatic-macroinvertebrate assemblages and stream hydrologic attributes to develop flow–ecology response relations. A sub-regional transient groundwater flow model (MODFLOW) was used to simulate three plausible high-stress groundwater-withdrawal scenarios which resulted in stream baseflow reductions of approximately 0.12, 0.20, and 0.26 m3 s-1. These reduction scenarios were used to construct flow-alteration ecological response models to evaluate aquatic-macroinvertebrate response to streamflow reduction. For example, flow-alteration ecological response models indicate that if groundwater withdrawals diminish mean annual streamflow from 1.1 to 0.6 m3 s-1, the abundance of intolerant taxa could be reduced by as much as 20%. These flow-alteration ecological response modelling results could be used by resource professionals to evaluate alternative water management strategies to determine maximum basin withdrawal rates that meet ongoing human water demand while protecting biological integrity.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Kennen, J.G., Riskin, M.L., and Charles, E.G., 2014. Effects of streamflow reductions on aquatic macroinvertebrates: linking groundwater withdrawals and assemblage response in southern New Jersey streams, USA. Hydrological Sciences Journal, 59 (3–4), 545–561.  相似文献   
157.
Hybrid depositional systems are created by the interaction of two or more hydrodynamic processes that control facies distribution and their characteristics in terms of sedimentary structures and depositional geometry. The interaction of wave and tide both in the geological sedimentary record and modern environments has been rarely described in the literature. Mixed coastal environments are identified by the evidence of wave and tidal structures and are well identified in nearshore environments, while their recognition in lower shoreface–offshore environments lacks direct information from modern settings. Detailed field analyses of 10 stratigraphic sections of the Lower Ordovician succession (Fezouata and Zini formations; Anti‐Atlas, Morocco) have allowed the definition of 14 facies, all grouped in four facies zones belonging to a storm‐dominated, wave‐dominated sedimentary siliciclastic system characterized by symmetrical ripples of various scales. Peculiar sedimentary organization and sedimentary structures are observed: (i) cyclical changes in size of sedimentary structures under fair‐weather or storm‐weather conditions; (ii) decimetre‐deep erosional surfaces in swaley cross‐stratifications; (iii) deep internal erosion within storm deposits; (iv) discontinuous sandstone layers in most depositional environments, and common deposition of sandstones with a limited lateral extension, interpreted to indicate that deposition at all scales (metric to kilometric) is discontinuous; (v) combined flow–oscillation ripples showing aggrading–prograding internal structures alternating with purely aggrading wave ripples; and (vi) foreshore environments characterized by alternating phases of deposition of parallel stratifications, small‐scale and large‐scale ripples and tens of metres‐wide reactivation surfaces. These characteristics of deposition suggest that wave intensity during storm‐weather or fair‐weather conditions was continuously modulated by another controlling factor of the sedimentation: the tide. However, tidal structures are not recognized, because they were probably not preserved due to dominant action of storms and waves. A model of deposition is provided for this wave‐dominated, tide‐modulated sedimentary system recording proximal offshore to intertidal–foreshore environments, but lacking diagnostic tidal structures.  相似文献   
158.
Sustainable groundwater extraction in coastal areas: a Belgian example   总被引:1,自引:0,他引:1  
Water extractions in coastal areas have to deal with salt water intrusion and lowering of hydraulic heads in valuable ecosystems. Therefore, sustainable management of fresh water resources in these areas is crucial. This is illustrated here with two water extractions in the western Belgian coastal plain which extract groundwater from a phreatic dune aquifer. One water extraction faced problems with salt water intrusion, while lowering of hydraulic heads was an issue for both. To remedy the salt water intrusion, it was found that decreasing the extraction rate was the only solution. To offset this and to increase hydraulic heads around both extractions, it was decided to artificially recharge the aquifer of the second extraction with tertiary treated wastewater. By taking these interventions, the combined production capacity of the water extractions was increased with 56% whereas 27% less water was extracted from the dune aquifer itself. Extraction history and the effects of interventions are illustrated for both water extractions with water quality data and fresh water head observations. A more detailed insight in groundwater flow and fresh–salt water distribution in the aquifer is provided by simulating the evolution of the water extractions with a 3D density dependent groundwater flow model.  相似文献   
159.
The basin edge effect, i.e., the interference of the direct S wave with the surface wave diffracted off the basin edge has been invoked by many authors to explain the damage distribution during the January 17, 1995 Hyogo-Ken Nanbu (Kobe) earthquake. Here we present the results of numerical experiments obtained with the spectral element method in 2-D geometry. Our results confirm that the amplification of horizontal motion close to the basin edge can be twice as large as the one measured in the center of the basin. This additional amplification is shown to depend strongly on the edge geometry and on frequency, due to physical dispersion of diffracted surface waves. In particular we obtain maximal amplification around 3 Hz, at frequencies critical for buildings.  相似文献   
160.
Natural Resources Research - Geochemical anomalies are commonly separated into different geochemical anomaly levels based on one or more thresholds. However, this practice may cause some important...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号