首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
  国内免费   1篇
地球物理   6篇
地质学   34篇
海洋学   8篇
天文学   18篇
综合类   1篇
自然地理   3篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   8篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
11.
The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes. We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on the other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.  相似文献   
12.
Strong benthic–pelagic coupling is an important characteristic of shallow coastal marine ecosystems. Building upon a rich history of benthic metabolism data, we measured oxygen uptake and nutrient fluxes across the sediment–water interface along a gradient of water column primary production in Narragansett Bay, RI (USA). Despite the strong gradients seen in water column production, sediment oxygen demand (SOD) and benthic nutrient fluxes did not exhibit a clear spatial pattern. Some of our sites had been studied in the 1970s and 1980s and thus allowed historical comparison. At these sites, we found that SOD and benthic fluxes have not changed uniformly throughout Narragansett Bay. In the uppermost portion of the bay, the Providence River Estuary, we observed a significant decrease in dissolved inorganic phosphorus fluxes which we attribute to management interventions. At another upper bay site, we observed significant declines in SOD and dissolved inorganic nitrogen fluxes which may be linked to climate-induced decreases in water column primary production and shifts in bloom phenology. In the 1970s, benthic nutrient regeneration supplied 50% to over 200% of the N and P needed to support primary production by phytoplankton. Summer nutrient regeneration in the Providence River Estuary and Upper bay now may only supply some 5–30% of the N and 3–20% of the P phytoplankton demand.  相似文献   
13.
We have investigated the abundances of Titan's stratospheric oxygen compounds using 0.5 cm−1 resolution spectra from the Composite Infrared Spectrometer on the Cassini orbiter. The CO abundance was derived for several observations of far-infrared nadir spectra, taken at a range of latitudes (75° S-35° N) and emission angles (0°-60°), using rotational lines that have not been analysed before the arrival of Cassini at Saturn. The derived volume mixing ratios for the different observations are mutually consistent regardless of latitude. The weighted mean CO volume mixing ratio is 47±8 ppm if CO is assumed to be uniform with latitude. H2O could not be detected and an upper limit of 0.9 ppb was determined. CO2 abundances derived from mid-infrared nadir spectra show no significant latitudinal variations, with typical values of 16±2 ppb. Mid-infrared limb spectra at 55° S were used to constrain the vertical profile of CO2 for the first time. A vertical CO2 profile that is constant above the condensation level at a volume mixing ratio of 15 ppb reproduces the limb spectra very well below 200 km. This is consistent with the long chemical lifetime of CO2 in Titan's stratosphere. Above 200 km the CO2 volume mixing ratio is not well constrained and an increase with altitude cannot be ruled out there.  相似文献   
14.
We have used the spectra obtained by the Composite Infrared Spectrometer (CIRS) onboard the Cassini spacecraft to search for latitudinal variation in the 15N/14N ratio on Jupiter. We found no variations statistically significant given the observational and model uncertainties. The absence of latitudinal variations demonstrates that 15NH3 is not fractionated in Jupiter's atmosphere, and that the measured 15N/14N represents Jupiter's global value. Our mean value for the global jovian 15N/14N ratio of (2.22±0.52)×10−3 agrees with previous measurements made by Fouchet et al. (2000, Icarus 143, 223-243) and Owen et al. (2001, Astrophys. J. 553, L77-L79). We argue that the jovian isotopic 15N/14N ratio must represent the solar nitrogen isotopic composition. The solar 15N/14N ratio hence significantly differs from the terrestrial value: (15N/14N)=3.68×10−3. This supports the proposition that terrestrial nitrogen originates from a nitrogen reservoir isolated from the main nitrogen reservoir in the proto-solar nebula. The origin and carrier of this isolated reservoir are still unknown.  相似文献   
15.
Analysis of Titan’s hemispheric brightness asymmetry from mapped Cassini images reveals an axis of symmetry that is tilted with respect to the rotational axis of the solid body. Twenty images taken from 2004 through 2007 show a mean axial offset of 3.8 ± 0.9° relative to the solid body’s pole, directed 79 ± 24° to the west of the sub-solar longitude. These values are consistent with recent measurements of an implied atmospheric spin axis determined from isothermal mapping by [Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A., 2008. Icarus 197, 549-555].  相似文献   
16.
Mid-infrared spectra measured by Cassini's Composite InfraRed Spectrometer (CIRS) between July 2004 and January 2007 (Ls=293°-328°) have been used to determine stratospheric temperature and abundances of C2H2, C3H4, C4H2, HCN, and HC3N. Over 65,000 nadir spectra with spectral resolutions of 0.5 and 2.5 cm−1 were used to probe spatial and temporal composition variations in Titan's stratosphere. Cassini's 180° orbital transfer in mid-2006 allowed low emission angle observations of the north polar region for the first time in the mission and allowed us to probe the full latitude range. We present the first measurements of composition variations within the polar vortex, which display increasing abundances right up to 90° N. The lack of a homogeneous abundance-latitude variation within the vortex indicates limited horizontal mixing and suggests that subsidence is greatest at the vortex core. Contrary to numerical model predictions and tropospheric cloud observations, we do not see any evidence for a secondary circulation cell near the south pole, which suggests a single Hadley-type circulation in the stratosphere at this epoch. This difference can be reconciled if the secondary cell is restricted to altitudes below 100 km, where there is no sensitivity in our data. Temporal variations in composition were observed in the south, with volatile species becoming less abundant as the season progressed. The observed variations are compared to numerical model predictions and observations from Voyager.  相似文献   
17.
New marine ΔR values for Arctic Canada   总被引:1,自引:0,他引:1  
For more than four decades, the reporting of 14C dates on marine molluscs from Arctic Canada has been notable for the lack of consistently applied marine reservoir corrections. We propose that the common approach of reporting Canadian Arctic marine 14C dates using presumed time-invariant reservoir corrections be abandoned in favour of calibration of 14C dates, using the current standard protocol. This approach best facilitates inter- and intra-regional correlation, and correlation with other geochronometers. In order to enable the consistent calibration of marine 14C dates from Arctic Canada, we analysed a 14C database of 108 marine mollusc samples collected live between 1894 and 1956, and determined regional reservoir offset values (ΔR) for eight oceanographically distinct regions. The following new ΔR values should be used for 14C calibration: NW Canadian Arctic Archipelago, 335 ± 85 yrs; Foxe Basin, 310 ± 90 yrs; NE Baffin Island, 220 ± 20 yrs; SE Baffin Island, 150 ± 60 yrs; Hudson Strait, 65 ± 60 yrs; Ungava Bay, 145 ± 95 yrs; Hudson Bay, 110 ± 65 yrs; and James Bay, 365 ± 115 yrs.  相似文献   
18.
The accumulation of sediments, trace metals and hydrocarbons has been estimated from the analysis of the sediment from six coring sites in Narragansett Bay. Radionuclides (234Thxs, 210Pbxs, 239,240Pu) with known input functions and trace metals (Cu, Pb) were used. We estimate that 6·9 × 104 tons of sediments, 51–90 tons of Pb, 72–100 tons of Cu and 400–1000 tons of total hydrocarbons accumulate annually under present conditions in the bay. This represents 64–117% (Pb), 89–123% (Cu) and 23–58% (hydrocarbons), respectively, of present day inputs to the bay. Furthermore, close to 100% of the particle-reactive radionuclides 210Pb and 239,240Pu accumulate in the bay. Present day inputs to the bay were calculated independently as 77–80 tons Pb and 81 tons of Cu. Sewage effluents were the dominant source of Cu, whereas atmospheric deposition and urban runoff were most important for Pb. Dredging activities by the U.S. Army Corps of Engineers between 1946 and 1971 removed more sediments from the bay than would have accumulated during the same time in the undredged areas of the bay. Copper smelting and coal mining on the shores of the upper bay during 1866–1880 left an imprint in the sediments which is still evident. Model derived accumulation rates of Pb, Cu and coal during that time were 3–4 times present-day inputs.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号