首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   3篇
测绘学   1篇
大气科学   7篇
地球物理   17篇
地质学   38篇
海洋学   22篇
天文学   59篇
综合类   1篇
自然地理   11篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   13篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   15篇
  2008年   8篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
  1974年   1篇
  1966年   1篇
排序方式: 共有156条查询结果,搜索用时 218 毫秒
41.
42.
We identify coronal holes using a histogram-based intensity thresholding technique and compare their properties to fast solar wind streams at three different points in the heliosphere. The thresholding technique was tested on EUV and X-ray images obtained using instruments onboard STEREO, SOHO and Hinode. The full-disk images were transformed into Lambert equal-area projection maps and partitioned into a series of overlapping sub-images from which local histograms were extracted. The histograms were used to determine the threshold for the low intensity regions, which were then classified as coronal holes or filaments using magnetograms from the SOHO/MDI. For all three instruments, the local thresholding algorithm was found to successfully determine coronal hole boundaries in a consistent manner. Coronal hole properties extracted using the segmentation algorithm were then compared with in situ measurements of the solar wind at ~?1 AU from ACE and STEREO. Our results indicate that flux tubes rooted in coronal holes expand super-radially within 1 AU and that larger (smaller) coronal holes result in longer (shorter) duration high-speed solar wind streams.  相似文献   
43.
HiRISE has been producing a large number of scientifically useful color products of Mars and other planetary objects. The three broad spectral bands, coupled with the highly sensitive 14 bit detectors and time delay integration, enable detection of subtle color differences. The very high spatial resolution of HiRISE can augment the mineralogic interpretations based on multispectral (THEMIS) and hyperspectral datasets (TES, OMEGA and CRISM) and thereby enable detailed geologic and stratigraphic interpretations at meter scales. In addition to providing some examples of color images and their interpretation, we describe the processing techniques used to produce them and note some of the minor artifacts in the output. We also provide an example of how HiRISE color products can be effectively used to expand mineral and lithologic mapping provided by CRISM data products that are backed by other spectral datasets. The utility of high quality color data for understanding geologic processes on Mars has been one of the major successes of HiRISE.  相似文献   
44.
A fundamental understanding of the relation between stress concentrations at grain contacts and microfractures in granular aggregates is obtained through two-dimensional photomechanical model studies and is tested through observational studies of experimentally deformed sandstone discs, glass beads, and quartz sand.In uncemented aggregates, the state of stress in each grain is controlled by the manner in which the applied load is transmitted across grain contacts. The angles between lines connecting pairs of contacts and the axis of the principal load acting at the boundaries of the aggregate determine which of all contacts will be most highly stressed or “critical”. Microfractures follow that maximum principal stress trajectory which connects critical contacts, and they propagate through those points where the magnitude of the local maximum stress difference is the greatest. Microfractures, therefore, are extension fractures. It then follows that both the locations and orientations of fractures can be predicted if the state of stress in the grains is known.Positioning of critical contacts depends primarily on sorting, packing, grain shapes, and the boundary load conditions applied to the aggregate. Some critical contacts and, therefore, microfractures tend to join together in a series or “chain”. Orientations of chains are most strongly influenced by the direction of the maximum compressive load at the boundary of the aggregate. A hydrostatic load applied on the boundaries of an aggregate can cause microfracturing within grains. Orientations for microfractures and contact lines are random in poorly sorted aggregates, but they are influenced by packing in well sorted aggregates.Grains of cemented aggregates are more highly stressed at their centers than at contacts. By analogy, microfracture orientations depend strongly on the position of the greatest load axis and only slightly on the low-magnitude stress concentrations at contacts. These microfractures parallel the greatest principal stress trajectory in regions where the magnitude of the maximum stress difference is greatest. These observations lead to the conclusion that fractures in grains of cemented aggregates are also extension fractures and should exhibit a higher degree of preferred orientation than in uncemented counterparts.These conclusions hold when cementing materials have about the same elastic moduli as the grains. Cements may be so weak that the aggregate behaves as if it were uncemented in terms of microfracture fabric, or so stiff that the major part of the load is transmitted by the cement, and the composite is no longer an aggregate in the mechanical sense.  相似文献   
45.
46.
47.
Abstract The sensitivity of backstripping calculations (sedimentation rates and tectonic subsidence) to uncertainties regarding porosity reduction is examined. Models simulating compaction and externally sourced cementation are considered to provide first-order bounds on the thickness and mass changes for individual sedimentary units. These bounds can be used to estimate uncertainties in sedimentation rate and subsidence estimates. With these models, the timing of cement development can be regarded as unimportant for backstripping calculations. Calculations have been made to evaluate the effect on backstripping calculations of uncertainties in sediment porosity, density and the mechanisms of porosity reduction. Departures from theoretically predicted subsidence curves of the order of 100 m or so have been variously interpreted as the result of fluctuations or uncertainties in sea-level, palaeobathymetry, tectonic stress, sedimentation rates and stratigraphic age. Two examples are given to illustrate that such departures may occur in some subsidence curves merely as a result of imprecise assumptions regarding porosity reduction. Consideration should be given to the uncertainties in models for porosity reduction when using subsidence curves to infer second order tectonic influence during basin evolution.  相似文献   
48.
The Solar Eclipse Corona Imaging System (SECIS) was used to record high-cadence observations of the solar corona during the total solar eclipse of 1999 August 11. During the 2 min 23.5 s of totality, 6364 images were recorded simultaneously in each of the two channels: a white light channel, and the Fe  xiv (5303 Å) 'green line' channel ( T ∼2 MK) . Here we report initial results from the SECIS experiment, including the discovery of a 6-s intensity oscillation in an active region coronal loop.  相似文献   
49.
50.
Gallagher  Peter T.  Moon  Y.-J.  Wang  Haimin 《Solar physics》2002,209(1):171-183
This paper discusses a near real-time approach to solar active-region monitoring and flare prediction using the Big Bear Solar Observatory Active Region Monitor (ARM). Every hour, ARM reads, calibrates, and analyses a variety of data including: full-disk Hα images from the Global Hα Network; EUV, continuum, and magnetogram data from the Solar and Heliospheric Observatory (SOHO); and full-disk magnetograms from the Global Oscillation Network Group (GONG). For the first time, magnetic gradient maps derived from GONG longitudinal magnetograms are now available on-line and are found to be a useful diagnostic of flare activity. ARM also includes a variety of active-region properties from the National Oceanic and Atmospheric Administration's Space Environment Center, such as up-to-date active-region positions, GOES 5-min X-ray data, and flare-to-region identifications. Furthermore, we have developed a Flare Prediction System which estimates the probability for each region to produce C-, M-, or X-class flares based on nearly eight years of NOAA data from cycle 22. This, in addition to BBSO's daily solar activity reports, has proven a useful resource for activity forecasting. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1020950221179  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号