首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
大气科学   5篇
地球物理   8篇
地质学   30篇
海洋学   9篇
自然地理   4篇
  2018年   5篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
31.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   
32.
A 3D structural modelling of the Permian–Mesozoic Polish Basin was performed in order to understand its structural and sedimentary evolution, which led to basin maturation (Permian–Cretaceous) and its tectonic inversion (Late Cretaceous–Paleogene). The model is built on the present-day structure of the basin and comprises 13 horizons within the Permian to Quaternary rocks. The analysis is based on 3D depth views and thickness maps. The results image the basin-scale symmetry, the perennial localization of the NW–SE-oriented basin axis, the salt movements due to tectonics and/or burial, and the transverse segmentation of the Polish Basin. From these observations, we deduce that salt structures are correlated to the main faults and tectonic events. From the model analysis, we interpret the stress conditions, the timing, and the geometry of the tectonic inversion of the Polish Basin into a NW–SE-oriented central horst (Mid-Polish Swell) bordered by two lateral troughs. Emphasis is placed on the Zechstein salt, considering its movements during the Mesozoic sedimentation and its decoupling effect during the tectonic inversion. Moreover, we point to the structural control of the Paleozoic basement and the crustal architecture (Teisseyre–Tornquist Zone) on the geometry of the Polish Basin and the Mid-Polish Swell.  相似文献   
33.
Dynamic characteristics of buildings are of utmost importance in earthquake engineering. The vibration periods are required to determine design loads, and damping is necessary in time‐history analysis. These parameters are generally obtained through forced‐vibration tests (FVTs) or after a seismic event in the case of permanently instrumented structures. However, for large civil engineering structures, FVTs are often too costly or practically difficult, and ambient or output‐only methods are used. This paper describes a comparison between ambient and FVTs carried out on a two‐story building. Results from both testing methods are compared and discussed in order to assess the vibration properties estimates obtained with the frequency domain decomposition technique. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
34.
35.
Résumé

Les propriétés magnétiques des schistes, grès et calcaires du flysch eocène de la zone dauphinoise ont été étudiées en relation avec la minéralogie et la structure de ces roches. La susceptibilité magnétique en champ faible est principalement due au paramagnétisme des phyllosilicates (illite et chlorite).

L’anisotropie de susceptibilité correspond à un ellipsoïde aplati qui présente les caractéristiques suivantes : un axe minimal perpendiculaire à la schistosité et un axe maximal parallèle soit à une linéation d’intersection soit à la direction d’étirement maximal.

On présente un modèle mathématique simple permettant d’utiliser le taux d’anisotropie magnétique pour quantifier l’orientation préférentielle des phyllosilicates. Ce modèle testé sur les niveaux les plus phylliteux du flysch donne des résultats en bon accord avec ceux de la goniometrie de texture. Les possibilités et les avantages de cette méthode structure-logique quantitative sont discutés.  相似文献   
36.
A comprehensive 32 kHz multibeam bathymetry and backscatter survey of Cook Strait, New Zealand (∼8500 km2), is used to generate a regional substrate classification map over a wide range of water depths, seafloor substrates and geological landforms using an automated mapping method based on the textural image analysis of backscatter data. Full processing of the backscatter is required in order to obtain an image with a strongly attenuated specular reflection. Image segmentation of the merged backscatter and bathymetry layers is constrained using shape, compactness, and texture measures. The number of classes and their spatial distribution are statistically identified by employing an unsupervised fuzzy-c-means (FCM) clustering algorithm to sediment samples, independent of the backscatter data. Classification is achieved from the overlay of the FCM result onto a segmented image and attributing segments with the FCM class. Four classes are identified and uncertainty in class attribution is quantified by a confusion index layer. Validation of the classification map is done by comparing the results with the sediment and structural maps. Backscatter (BS) strength angular profiles are used to show acoustic class separation. The method takes us one step further in combining multibeam data with physical seabed data in a complementary analysis to seek correlations between datasets using object-based image analysis and unsupervised classification. Texture within these identified classes is then examined for correlation with typical backscatter angular responses for mud, sand and gravel. The results show a first order correlation between each of the classes and both the sedimentary properties and the geomorphological map.  相似文献   
37.
Abstract

The UN Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol provide mechanisms for assisting less developed countries that are adversely affected by climate change. Such assistance would need a baseline, which ideally would set a precise date for specific impacts of climate change. This article presents the results of statistical tests that we carried out and, for the African region of the Sahel, finds that for precipitation (affecting food supply), impacts due to climate change can be ‘dated’ to the year 1967, when precipitation fell drastically, affecting the local food supply. Such a statistically robust benchmark would be useful to the Subsidiary Body for Scientific and Technological Advice (SBSTA) of the UNFCCC. The method illustrates how other baselines may be established for the important work of the SBSTA.  相似文献   
38.
This study provides a comprehensive global analysis of the climate radiative feedbacks and the adjusted radiative forcing for a CO2 increase perturbation in the CNRM-CM5 climate model using the partial radiative perturbations (PRP) method. Some methodological key points of the PRP are investigated, with a particular focus on the consideration of the effect of fast adjustments. First, the standard PRP method is applied by neglecting certain fast adjustments. The effect of the field decorrelation is highlighted by performing a PRP across two different periods of a control experiment and by analyzing second-order terms. Sensitivity tests to the field substitution frequency, the sampling period and the perturbed experiment used are performed. The impact of the definition of the top of the climate system (top-of-the-atmosphere or tropopause) in the feedback estimate is also discussed. Secondly, the fast adjustment processes are taken into account by combining the PRP framework with the method of linear regression of the partial net radiative flux change against the mean surface air temperature change using a step forcing experiment. This method allows us to quantify the contribution of the different constituents to the forcing adjustment and to improve the estimation of the radiative feedbacks. It is shown that such decomposition allows the retrieval of the adjusted radiative forcing, the radiative feedbacks and the climate sensitivity as estimated with the linear regression method with a high level of accuracy, validating the partial decomposition.  相似文献   
39.
The Hawaiian–Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for 80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past 45 m.y.  相似文献   
40.
We present multi channel seismic data recorded at the transition between the Ivorian (rifted) basin and the Côte d’Ivoire–Ghana marginal ridge (formed in a Cretaceous transform margin). The ridge is made of sedimentary sequences continuous with the synrift sediments of the Ivorian basin. Clinoformal structures suggest synrift progradational sedimentation originating from the Brazilian craton, which was located to the south during the Cretaceous. Subsequent to rifting, southward migration of the transform motion isolated the ridge from the Brazilian shelf. In the western part of the marginal ridge, crustal half-grabens are buried by postrifting progradational sedimentation, suggesting important posttransform subsidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号