首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4605篇
  免费   181篇
  国内免费   66篇
测绘学   136篇
大气科学   371篇
地球物理   926篇
地质学   1483篇
海洋学   421篇
天文学   1089篇
综合类   13篇
自然地理   413篇
  2021年   52篇
  2020年   68篇
  2019年   86篇
  2018年   129篇
  2017年   107篇
  2016年   141篇
  2015年   128篇
  2014年   144篇
  2013年   274篇
  2012年   139篇
  2011年   221篇
  2010年   161篇
  2009年   232篇
  2008年   193篇
  2007年   202篇
  2006年   174篇
  2005年   146篇
  2004年   150篇
  2003年   133篇
  2002年   132篇
  2001年   105篇
  2000年   123篇
  1999年   97篇
  1998年   94篇
  1997年   73篇
  1996年   64篇
  1995年   56篇
  1994年   57篇
  1993年   46篇
  1992年   48篇
  1991年   46篇
  1990年   42篇
  1989年   44篇
  1988年   33篇
  1987年   49篇
  1986年   40篇
  1985年   73篇
  1984年   64篇
  1983年   68篇
  1982年   59篇
  1981年   61篇
  1980年   55篇
  1979年   46篇
  1978年   38篇
  1977年   45篇
  1976年   38篇
  1975年   41篇
  1974年   22篇
  1973年   30篇
  1972年   23篇
排序方式: 共有4852条查询结果,搜索用时 15 毫秒
151.
The effect of dissolved barium on biogeochemical processes at cold seeps   总被引:2,自引:0,他引:2  
A numerical model was applied to investigate and quantify the biogeochemical processes fueled by the expulsion of barium and methane-rich fluids in the sediments of a giant cold-seep area in the Derugin Basin (Sea of Okhotsk). Geochemical profiles of dissolved Ba2+, Sr2+, Ca2+, SO42−, HS, DIC, I and of calcium carbonate (CaCO3) were fitted numerically to constrain the transport processes and the kinetics of biogeochemical reactions. The model results indicate that the anaerobic oxidation of methane (AOM) is the major process proceeding at a depth-integrated rate of 4.9 μmol cm−2 a−1, followed by calcium carbonate and strontian barite precipitation/dissolution processes having a total depth-integrated rate of 2.1 μmol cm−2 a−1. At the low seepage rate prevailing at our study site (0.14 cm a−1) all of the rising barium is consumed by precipitation of barite in the sedimentary column and no benthic barium flux is produced. Numerical experiments were run to investigate the response of this diagenetic environment to variations of hydrological and biogeochemical conditions. Our results show that relatively low rates of fluid flow (<∼5 cm a−1) promote the dispersed precipitation of up to 26 wt% of barite and calcium carbonate throughout the uppermost few meters of the sedimentary column. Distinct and persistent events (several hundreds of years long) of more vigorous fluid flow (from 20-110 cm a−1), instead, result in the formation of barite-carbonate crusts near the sediment surface. Competition between barium and methane for sulfate controls the mineralogy of these sediment precipitates such that at low dissolved methane/barium ratios (<4-11) barite precipitation dominates, while at higher methane/barium ratios sulfate availability is limited by AOM and calcium carbonate prevails. When seepage rates exceed 110 cm a−1, barite precipitation occurs at the seafloor and is so rapid that barite chimneys form in the water column. In the Derugin Basin, spectacular barite constructions up to 20 m high, which cover an area of roughly 22 km2 and contain in excess of 5 million tons of barite, are built through this process. In these conditions, our model calculates a flux of barium to the water column of at least 20 μmol cm−2 a−1. We estimate that a minimum of 0.44 × 106 mol a−1 are added to the bottom waters of the Derugin Basin by cold seep processes, likely affecting the barium cycle in the Sea of Okhotsk.  相似文献   
152.
A series of experiments was conducted to determine the potential for aeolian abrasion of natural dune sands to produce fine particles (< 125 µm) by (1) the release of resident fines; (2) spalling, chipping and breakage of particles; and (3) the removal of grain surface coatings. Parent samples were obtained from the surfaces of four active continental dunes and abraded using a glass ‘test tube’ chamber for up to 120 h. The fine particles produced by this abrasion process were trapped at varying time intervals and subject to detailed particle‐size analyses using a Coulter Multisizer. The abrasion of untreated parent samples produced fine particles in one of two main size classes, < 10 µm and > 50 µm, but when the parent sample was sieved to exclude particles < 250 µm, relatively more material in the range 10–50 µm was produced. For unsieved parent samples, the size range associated with the dominant mode varied according to the length of the abrasion time. The coarsest mode (> 63 µm) was dominant during the first 16 h of abrasion, then became less significant and is thought to be associated with the release of resident fines into suspension. The finest mode (< 10 µm) was absent or very weak during the first 16 h of abrasion, then became more significant and, in some instances, dominated the distribution as abrasion continued. Removal of grain surface coatings is the main source of fine material < 10 µm, and this may be a significant source of fine material in areas where sands are dominated by subrounded and rounded particles. By comparison with previous studies of aeolian particle abrasion, these natural dune sands produced very low quantities of fine material (by weight), but their spatial extent makes them potentially a significant source of dust‐sized particles at the global scale.  相似文献   
153.
A new Geologic Time Scale, with special reference to Precambrian and Neogene   总被引:10,自引:0,他引:10  
A Geologic Time Scale (GTS2004) is presented that integrates currently available stratigraphic and geochronologic information. Key features of the new scale are outlined, how it was constructed, and how it can be further improved. The accompanying International Stratigraphic Chart, issued under auspices of the International Commission on Stratigraphy (ICS), shows the current chronostratigraphic scale and ages with estimates of uncertainty for all stage boundaries. Special reference is made to the Precambrian part of the time scale, which is coming of age in terms of detail, and to the Neogene portion, which has attained an ultra-high-precision absolute-age calibration.  相似文献   
154.
Metasomatism accompanying kimberlite emplacement is a worldwide phenomenon, although infrequently described or recognised. At the Cambrian-aged Murowa and Sese kimberlite clusters located within the Archean Zimbabwe Craton just north of the boundary with the Limpopo Mobile Zone in southern central Zimbabwe, the metasomatism is intense and well exposed and the processes can be readily studied. Dykes, sills and the root zones of pipes are exposed at the current erosion level. Kimberlite lithologies present are hypabyssal macrocrystic kimberlite (“HMK”), HMK breccia, and tuffisitic kimberlite breccia (“TKB”) including minor lithic tuffisitic kimberlite breccia (“LTKB”). Country rocks are 2.6 Ga Chibi and Zimbabwe granite batholiths emplaced into 2.6–2.9 Ga or earlier Archean tonalitic gneiss and greenstones. During initial metasomatism, the granites become spotted with green chlorite, needles of alkaline amphiboles (winchite, riebeckite, arfvedsonite) and pyroxenes (aegirine–augite) with minor carbonate and felts of talc. Oligoclase feldspar becomes converted to albite, extensively altered, dusted and reddened with hematite, whereas K-feldspar remains unaffected. The granites become converted to syenite through removal of quartz. More intense metasomatism at Murowa and Sese results in veins of green metasomatite which cut and disrupt the granite. Progressive disruption entrains granite blocks, breaking down the granite still further, spalling off needle-like granite slivers, and so giving rise to LTKB. This process of disruption and entrainment appears to be the manner of initial development of the pipe structure. The chemistry of the metasomatite is intermediate between granite and kimberlite. Compared to granite country rock it has markedly higher Mg, Cr, Ni, CO2 and H2O+, higher Ca, Mn, Nb, Sr, P, Fe3+/Fe2+ ratio, U, Co, and Cu, approximately equal TiO2, K2O, Na2O, La, Ta, Rb, Zr, Zn and resultant lower SiO2, Al2O3, Ga and Y. The metasomatite Na2O/K2O ratio is slightly higher than that of the granite. The metasomatic process is broadly analogous to fenitisation of granitic wall rock accompanying carbonatite complex emplacement. The metasomatism at Murowa and Sese was caused by fluids from the rising but confined proto-kimberlite melt penetrating into cracks and matrix of granite country rock and reacting with it. These fluids were CO2-rich, hydrous, oxidising, enhanced in ultramafic elements and carried low levels of Na.  相似文献   
155.
The pipe shapes, infill and emplacement processes of the Attawapiskat kimberlites, including Victor, contrast with most of the southern African kimberlite pipes. The Attawapiskat kimberlite pipes are formed by an overall two-stage process of (1) pipe excavation without the development of a diatreme (sensu stricto) and (2) subsequent pipe infilling. The Victor kimberlite comprises two adjacent but separate pipes, Victor South and Victor North. The pipes are infilled with two contrasting textural types of kimberlite: pyroclastic and hypabyssal-like kimberlite. Victor South and much of Victor North are composed of pyroclastic spinel carbonate kimberlites, the main features of which are similar: clast-supported, discrete macrocrystal and phenocrystal olivine grains, pyroclastic juvenile lapilli, mantle-derived xenocrysts and minor country rock xenoliths are set in serpentine and carbonate matrices. These partly bedded, juvenile lapilli-bearing olivine tuffs appear to have been formed by subaerial fire-fountaining airfall processes.

The Victor South pipe has a simple bowl-like shape that flares from just below the basal sandstone of the sediments that overlie the basement. The sandstone is a known aquifer, suggesting that the crater excavation process was possibly phreatomagmatic. In contrast, the pipe shape and internal geology of Victor North are more complex. The northwestern part of the pipe is dominated by dark competent rocks, which resemble fresh hypabyssal kimberlite, but have unusual textures and are closely associated with pyroclastic juvenile lapilli tuffs and country rock breccias±volcaniclastic kimberlite. Current evidence suggests that the hypabyssal-like kimberlite is, in fact, not intrusive and that the northwestern part of Victor North represents an early-formed crater infilled with contrasting extrusive kimberlites and associated breccias. The remaining, main part of Victor North consists of two macroscopically similar, but petrographically distinct, pyroclastic kimberlites that have contrasting macrodiamond sample grades. The juvenile lapilli of each pyroclastic kimberlite can be distinguished only microscopically. The nature and relative modal proportion of primary olivine phenocrysts in the juvenile lapilli are different, indicating that they derive from different magma pulses, or phases of kimberlite, and thus represent separate eruptions. The initial excavation of a crater cross-cutting the earlier northwestern crater was followed by emplacement of phase (i), a low-grade olivine phenocryst-rich pyroclastic kimberlite, and the subsequent eruption of phase (ii), a high-grade olivine phenocryst-poor pyroclastic kimberlite, as two separate vents nested within the original phase (i) crater. The second eruption was accompanied by the formation of an intermediate mixed zone with moderate grade. Thus, the final pyroclastic pipe infill of the main part of the Victor North pipe appears to consist of at least three geological/macrodiamond grade zones.

In conclusion, the Victor kimberlite was formed by several eruptive events resulting in adjacent and cross-cutting craters that were infilled with either pyroclastic kimberlite or hypabyssal-like kimberlite, which is now interpreted to be of probable extrusive origin. Within the pyroclastic kimberlites of Victor North, there are two nested vents, a feature seldom documented in kimberlites elsewhere. This study highlights the meaningful role of kimberlite petrography in the evaluation of diamond deposits and provides further insight into kimberlite emplacement and volcanism.  相似文献   

156.
Numerical studies of ductile deformations induced by salt movements have, until now, been restricted to two-dimensional (2D) modelling of diapirism. This paper suggests a numerical approach to model the evolution of three-dimensional (3D) salt structures toward increasing maturity. This approach is also used here to restore the evolution of salt structures through successive earlier stages. The numerical methodology is applied to study several model examples. We analyse a model of salt diapirs that develop from an initial random perturbation of the interface between salt and its overburden and restore the evolved salt diapirs to their initial stages. We show that the average restoration errors are less than 1%. An evolutionary model of a 2D salt wall loaded by a 2D pile of sediments predicts a decomposition of the salt wall into 3D diapiric structures when the overburden of salt is supplied by 3D synkinematic wedge of sediments. We model salt extrusion feeding a gravity current over the depositional surface and estimate an average rate of extrusion and horizontal velocity of salt spreading. Faulting of the overburden to salt overhangs initiates new secondary diapirs, and we analyse the growth of these secondary diapirs. We also study how lateral flow effects the evolution of salt diapirs. The shape of a salt diapir can be very different if the rate of horizontal flow is much greater than the initial rate of diapiric growth solely due to gravity. We discuss the applicability of the results of the models to the evolution of Late Permian salt structures in the Pricaspian basin (Russia and Kazakhstan). These structures are distinguishable into a variety of styles representing different stages of growth: salt pillows, diapirs, giant salt massifs, 2D diapiric walls and 3D stocks complicated by large overhangs. The different sizes, shapes and maturities of salt structures in different parts of the Pricaspian basin reflect areal differences in salt thickness and loading history. Our results suggest that the numerical methodology can be employed to analyse the evolution of all salt structures that have upbuilt through younger ductile overburdens.  相似文献   
157.
Dextral transtensional deformation is occurring along the Sierra Nevada–Great Basin boundary zone (SNGBBZ) at the eastern edge of the Sierra Nevada microplate. In the Lake Tahoe region of the SNGBBZ, transtension is partitioned spatially and temporally into domains of north–south striking normal faults and transitional domains with conjugate strike-slip faults. The normal fault domains, which have had large Holocene earthquakes but account only for background seismicity in the historic period, primarily accommodate east–west extension, while the transitional domains, which have had moderate Holocene and historic earthquakes and are currently seismically active, primarily record north–south shortening. Through partitioned slip, the upper crust in this region undergoes overall constrictional strain.Major fault zones within the Lake Tahoe basin include two normal fault zones: the northwest-trending Tahoe–Sierra frontal fault zone (TSFFZ) and the north-trending West Tahoe–Dollar Point fault zone. Most faults in these zones show eastside down displacements. Both of these fault zones show evidence of Holocene earthquakes but are relatively quiet seismically through the historic record. The northeast-trending North Tahoe–Incline Village fault zone is a major normal to sinistral-oblique fault zone. This fault zone shows evidence for large Holocene earthquakes and based on the historic record is seismically active at the microearthquake level. The zone forms the boundary between the Lake Tahoe normal fault domain to the south and the Truckee transition zone to the north.Several lines of evidence, including both geology and historic seismicity, indicate that the seismically active Truckee and Gardnerville transition zones, north and southeast of Lake Tahoe basin, respectively, are undergoing north–south shortening. In addition, the central Carson Range, a major north-trending range block between two large normal fault zones, shows internal fault patterns that suggest the range is undergoing north–south shortening in addition to east–west extension.A model capable of explaining the spatial and temporal partitioning of slip suggests that seismic behavior in the region alternates between two modes, one mode characterized by an east–west minimum principal stress and a north–south maximum principal stress as at present. In this mode, seismicity and small-scale faulting reflecting north–south shortening concentrate in mechanically weak transition zones with primarily strike-slip faulting in relatively small-magnitude events, and domains with major normal faults are relatively quiet. A second mode occurs after sufficient north–south shortening reduces the north–south Shmax in magnitude until it is less than Sv, at which point Sv becomes the maximum principal stress. This second mode is then characterized by large earthquakes on major normal faults in the large normal fault domains, which dominate the overall moment release in the region, producing significant east–west extension.  相似文献   
158.
159.
An avulsion of the lower Saskatchewan River in the 1870s inundated a large segment of peat-covered floodplain that subsequently has become aggraded with a broad (500 km2) belt of alluvium deposited by the redirected flow. Routing of water and sediment discharge through the avulsion-affected area has been accomplished mainly by networks of sandy bedded anastomosed channels that have formed, evolved, and abandoned as the alluvial belt prograded down the floodplain slope. These processes continue today, though at a much-reduced rate. New channels, formed by crevassing and basinward extension of distributaries, are initially small and shallow, with bottom elevations situated within the avulsive alluvium but above the pre-avulsion peat (floodplain) surface. Subsequent enlargement and downcutting of many of these channels eventually uncovers the underlying peat layer whose resistance to erosion exerts significant influence on cross-sectional shape and further channel development. Peat-floored channels tend to have rectangular cross-sections, high ratios of average to maximum depth (D/Dmax), and a large range of width-to-depth ratios. If the channel continues to enlarge, the peat layer eventually becomes breached, commonly leading to temporarily irregular cross-sections caused by localized scouring at the breach sites. Eventually, the peat layer is completely eroded from the channel floor by undercutting and slumping, after which channel shape becomes governed mainly by other perimeter characteristics. Channels unaffected by peat, either before the peat layer is encountered during early channel development or after it is entirely removed, tend to have low width/depth ratios and a large range of D/Dmax values.  相似文献   
160.
A noble record     
Alexander B Verchovsky and Mark A Sephton review the origins and significance of noble gases in meteorites, focusing on what this unique record reveals about the early solar system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号