首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
  国内免费   10篇
测绘学   2篇
大气科学   7篇
地球物理   23篇
地质学   14篇
海洋学   44篇
天文学   3篇
综合类   4篇
自然地理   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   10篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2008年   7篇
  2007年   7篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1999年   2篇
  1995年   3篇
  1989年   1篇
  1986年   1篇
排序方式: 共有98条查询结果,搜索用时 482 毫秒
71.
The effect of the Taiwan Strait Current on the onshore intrusion of Kuroshio, both contributing to the formation of Tsushima Warm Current, is addressed theoretically by invoking a geostrophic adjustment model previously proposed. The idealized model assumes two unbounded basins, shallow and deep, separated by an infinitely long and thin barrier. On either side of the barrier, a western boundary current in the deep basin and a shelf current in the shallow basin flow along the barrier with the surface elevation of the former higher than that of the latter. When a part of the barrier is removed and a gap is created, the onshore part of the western boundary current intrudes onto the shallow basin through the gap while conserving its potential vorticity. Both the intruding current and the shelf current will later geostrophically adjust themselves to the disturbances created by the intrusion. Model results show that the transport of onshore intrusion increases with the sea level difference imposed initially between the deep and shallow basins across the barrier, indicating that the sea level rise associated with the strengthening of shelf current inhibits the shelf-ward intrusion. The intruding current is in jet mode when its transport is maximized, which otherwise is in coastal mode. The maximization of transport occurs when the sea level difference between the two basins is sufficiently large. Although this model greatly idealizes the problem, it explains well the observed fact that the transport of Tsushima Warm Current is fed mostly by the Taiwan Strait Current in summer when the latter becomes the strongest, and by the onshore intrusion of Kuroshio in winter when the Taiwan Strait Current nearly vanishes, suggesting that the seasonal variation of the onshore intrusion of Kuroshio is largely due to the seasonal variation in the strength of the Taiwan Strait Current.  相似文献   
72.
73.
74.
Long Xuyen Quadrangle is one of the important agricultural areas of the Mekong Delta of Vietnam accounting for 25% of rice production. In recent years, the area faces drought and salinization problems, as part of climate change impact and sea level rise. These are the main causes that led to the crop water deficits for agricultural production. Therefore, this work was conducted to predict crop water requirement (CWR) based on consideration of other related meteorological factors and further redefine the crop planting calendar (CPC) for three main cropping seasons including winter–spring (WS), summer–autumn (SA) and autumn–spring (AS) using the Cropwat crop model based on the current climate conditions and future climate change scenarios. Meteorological data for the baseline period (2006–2016) and future corresponding to timescales 2020s, 2055s and 2090s of Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios are used to predict CWR and CPC for the study area. The results showed that WS and SA crops needed more irrigation water than AS crop and the highest irrigation water requirement of the WS and SA crops occurred on developmental stage, while the AW crop appeared on growth, developmental and late stage for the baseline and timescales of RCP4.5 and RCP8.5 scenarios. Calculation results of the shift of CPC indicated that the CWR of the AW crop decreased lowest approximately 6.6–20.6% for timescales of RCP4.5 scenario and 20.6–25.5% for RCP8.5 scenario compared with the baseline.  相似文献   
75.
Harmful algal blooms (HABs), caused by the overgrowth of certain phytoplankton species, have negative effects on marine environments and coastal fisheries. In addition to cell-counting methods using phytoplankton nets, a hydroacoustic technique based on acoustic backscattering has been proposed for the detection of phytoplankton blooms. However, little is known of the acoustic properties of HAB species. In this study, as essential data to support this technique, we measured the acoustic properties of two HAB species, Akashiwo sanguinea and Alexandrium affine, which occur in the South Sea off the coast of Korea. Due to the small size of the target, we used ultrasound for the measurements. Experiments were conducted under laboratory and field conditions. In the laboratory experiment, the acoustic signal received from each species was directly proportional to the cell abundance. We derived a relationship between the cell abundance and acoustic signal received for each species. The measured signals were compared to predictions of a fluid sphere scattering model. When A. sanguinea blooms appeared at an abundance greater than 3 500 cells/mL, the acoustic signals varied with cell abundance, showing a good correlation. These results confirm that acoustic measurements can be used to detect HAB species.  相似文献   
76.
Satellite-derived sea surface temperature (SST) is validated based on in-situ data from the East China Sea (ECS) and western North Pacific where most typhoons, which make landfall on the Korean peninsula, are formed and pass. While forecasting typhoons in terms of intensity and track, coupled ocean-typhoon models are significantly influenced by initial ocean condition. Potentially, satellite-derived SST is a very useful dataset to obtain initial ocean field because of its wide spatial coverage and high temporal resolution. In this study, satellite-derived SST from various sources such as Tropical Rainfall Measuring Mission Microwave Imager (TMI), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and New Generation Sea Surface Temperature for Open Ocean (NGSST-O) datasets from merged SSTs were compared with in-situ observation data using an indirect method which is using near surface temperature for validation of satellite derived SST. In-situ observation data included shipboard measurements such as Expendable Bathythermograph (XBT), and Conductivity, Temperature, Depth (CTD), and Argo buoy data. This study shows that in-situ data can be used for microwave derived SST validation because homogeneous features of seawater prevail at water depths of 2 m to 10 m under favorable wind conditions during the summer season in the East China Sea. As a result of validation, root-mean-square errors (RMSEs) are shown to be 0.55 °C between microwave SST and XBT/CTD data mostly under weak wind conditions, and 0.7 °C between XBT/CTD measurement and NGSST-O data. Microwave SST RMSE of 0.55 °C is a potentially valuable data source for general application. Change of SST before and after typhoon passing may imply strength of ocean mixing due to upwelling and turbulent mixing driven by the typhoon. Based on SST change, ocean mixing, driven by Typhoon Nari, was examined. Satellite-derived SST reveals a significant SST drop around the track immediately following the passing of Typhoon Nari in October, 2007.  相似文献   
77.
Microalgae are photosynthetic microorganisms that function as primary producers in aquatic ecosystems. Some species of microalgae undergo rapid growth and cause harmful blooms in marine ecosystems. Heterocapsa triquetra is one of the most common bloom-forming species in estuarine and coastal waters worldwide. Although this species does not produce toxins, unlike some other Heterocapsa species, the high density of its blooms can cause significant ecological damage. We developed a H. triquetra species-specific nuclease protection assay sandwich hybridization (NPA-SH) probe that targets the large subunit of ribosomal RNA (LSU rRNA). We tested probe specificity and sensitivity with five other dinoflagellates that also cause red tides. Our assay detected H. triquetra at a concentration of 1.5×104 cells/mL, more sensitive than required for a red-tide guidance warning by the Korea Ministry of Oceans and Fisheries in 2015 (3.0×104 cells/mL). We also used the NPA-SH assay to monitor H. triquetra in the Tongyeong region of the southern sea area of Korea during 2014. This method could detect H. triquetra cells within 3 h. Our assay is useful for monitoring H. triquetra under field conditions.  相似文献   
78.
Ocean Science Journal - Dokdo and Ulleungdo islands harbor diverse marine algae and are therefore uniquely well-suited for research on marine algae distribution and ecological changes. However,...  相似文献   
79.
The compression index is a one of the important soil parameters that is essential to geotechnical designs. As the determination of the compression index from consolidation tests is relatively time-consuming, empirical formulas based on soil parameters can be useful. Over the decades, a number of empirical formulas have been proposed to relate the compressibility to other soil parameters, such as the natural water content, liquid limit, plasticity index, specific gravity, and others. Each of the existing empirical formulas yields good results for a particular test set, but cannot accurately or reliably predict the compression index from various test sets. In this study, an alternative approach, an artificial neural network (ANN) model, is proposed to estimate the compression index with numerous consolidation test sets. The compression index was modeled as a function of seven variables including the natural water content, liquid limit, plastic index, specific gravity, and soil types. Nine hundred and forty-seven consolidation tests for soils sampled at 67 construction sites in the Republic of Korea were used for the training and testing of the ANN model. The predicted results showed that the neural network could provide a better performance than the empirical formulas.  相似文献   
80.
A simple but practical numerical model describing a distant propagation of tsunamis is newly proposed by introducing an additional term to the existing modified scheme. The numerical dispersion of the proposed model is manipulated to replace the physical dispersion of the linear Boussinesq equations without any limitation. The new model developed in this study is applied to propagation of a Gaussian hump over a constant water depth and the predicted free surface displacements are compared with available analytical solutions. A very reasonable agreement is observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号