首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   11篇
  国内免费   2篇
测绘学   3篇
大气科学   8篇
地球物理   44篇
地质学   50篇
海洋学   41篇
天文学   8篇
综合类   1篇
自然地理   15篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   12篇
  2010年   6篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1984年   2篇
  1983年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
81.
Opening of the Japan Sea back arc basin was accompanied by extensional tectonics in the drifting southwest Japan arc. Various trends of Early Miocene grabens in the arc suggest multi-directional rifting, which necessarily involved strike-slip components of some of basin-margin faults. However, such components are not well understood. In this work we conducted a field survey in the Early Miocene Ichishi basin on the northern side of the Median Tectonic Line, central southwest Japan. We found that the basin was a compound of grabens that were formed along normal and sinistral strike-slip faults, the latter of which had northeast–southwest trends. The block faulting in this phase produced basement highs between sub-basins, which were filled with the lower part of the Ichishi Group. We found a low-angle angular unconformity at a middle horizon in the group, with which we define the upper and lower part of the group. The upper part onlapped both the basement highs and the lower part. It means that the transtensional basin formation ceased sometime between 18 and 17.5 Ma in the Ichishi area. The Ichishi basin turned subsequently into a sag basin subsided due to normal faulting probably along the Nunobiki-sanchi-toen fault zone. The transtension and the basin sag were driven by ENE–WSW extensional stress. This arc-parallel extension produced grabens various areas including Ichishi in the Early Miocene. The extensional deformation was eventually localized to the deep rift along the Fossa Magna to make the lithosphere under southwest Japan decoupled from that under northeast Japan. The decoupling allowed the rapid rotation of southwest Japan from ~17.5 Ma. The cluster of those grabens around the Ise bay probably determined the southeastern margin of the Kinki triangle.  相似文献   
82.
Non-metamorphosed, autochthonous Lesser Himalayan sediments (LHS), which are correlated to the Kuncha and Naudanda Formations, were found in a narrow belt between the Main Boundary Thrust and the Lesser Himalayan Thrust at the base of the Kuncha nappe in southeastern Nepal. The autochthonous Naudanda Formation is comprised of cross-bedded and rippled orthoquartzite and yielded a maximum depositional age of 1795.1 Ma ±5.1 Ma using detrital zircons. Low-grade metamorphosed quartzite in the Kuncha nappe yielded a maximum depositional age of 1867.4 Ma ±3.4 Ma, although it is totally recrystallized. These ages and age distribution patterns of detrital zircon grains indicate that the meta-quartzite of the nappe is originally Naudanda Formation. A zircon fission-track age of the autochthonous Naudanda Formation shows partially annealed age of 864 Ma ±56 Ma, in contrast, that of the Kuncha nappe shows a totally annealed age of 11.9 Ma ±1.6 Ma. These results suggest that the autochthonous LHS have never undergone metamorphism during the Himalayan orogeny. We also discovered a non-metamorphosed Heklang Formation that rests on the Naudanda Formation, and designated it as a sub-type section on the basis of detailed lithostratigraphic study. It is characterized by black and light green slate with dolerite sills and ill-sorted quartzose sandstone, and correlated to the metamorphosed Dandagaon Phyllites in the Kathmandu area. Non-metamorphosed autochthonous formations distributed to the south of the nappe front suggest that they escaped from thermal metamorphism by hot nappe.  相似文献   
83.
In this study, two sediment cores (~70 cm) were collected from separate mangrove forests straddling the Ba Lat Estuary, Red River of northern Vietnam, to examine the origins of sedimentary organic carbon (SOC) and reconstruct the paleoenvironment. In addition, mangrove leaves and particulate organic matter were collected and measured for δ13C to trace the origins of SOC. The cores were analyzed by high-resolution sections for δ13C, TOC, C/N ratios, sediment grain size, water content, and porosity, with values of δ13C, TOC, and C/N ratios ranging from −28.19 to −22.5‰, 2.14–30.94 mg/g, and 10.29–18.32, respectively. The δ13C and TOC relationship indicated that there were some small residual effects of diagenetic processes on TOC and δ13C values in mangrove sediments. However, the shifts of δ13C and C/N ratios from the bottom to the surface sediment of the cores explained the change in organic matter sources, with values of C/N > 12 and δ13C < −25‰, and C/N < 12 and δ13C > −25‰ indicated terrestrial (e.g., mangrove litter) and marine phytoplankton sources, respectively. The covarying δ13C, C/N ratios, and sediment grain sizes during the past 100 years in sediment cores showed that the paleoenvironment may be reconstructed into three environments (subtidal, tidal flat, and intertidal mangrove). General trends in δ13C and C/N followed a gradual increase in the C/N ratio and a concomitant decrease in δ13C from the subtidal, through to tidal flat, and to the intertidal mangrove. δ13C and C/N ratios are therefore effective in measuring the continuum of environmental change in mangrove ecosystem.  相似文献   
84.
Adsorption of reactive black 5 (RB5) from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Adsorption data obtained from different batch experiments were modeled using both pseudo first‐ and second‐order kinetic equations. The equilibrium adsorption data were fitted to the Freundlich, Tempkin, and Langmuir isotherms over a dye concentration range of 45–100 µmol/L. The best results were achieved with the pseudo second‐order kinetic and Langmuir isotherm equilibrium models, respectively. The equilibrium adsorption capacity (qe) was increased with increasing the initial dye concentration and solution temperature, and decreasing solution pH. The chitosan flakes for the adsorption of the dye was regenerated efficiently through the alkaline solution and was then reused for dye removal. The activation energy (Ea) of sorption kinetics was estimated to be 13.88 kJ/mol. Thermodynamic parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were evaluated by applying the van't Hoff equation. The thermodynamics of reactive dye adsorption by chitosan indicates its spontaneous and endothermic nature.  相似文献   
85.

Background  

Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM) control run are examined.  相似文献   
86.
We present relative sea level (RSL) curves in Antarctica derived from glacial isostatic adjustment (GIA)predictions based on the melting scenarios of the Antarctic ice sheet since the Last Glacial Maximum (LGM)given in previous works.Simultaneously,Holocene-age RSL observations obtained at the raised beaches along the coast of Antarctica are shown to be in agreement with the GIA predictions.The differences from previously published ice-loading models regarding the spatial distribution and total mass change of the melted ice are significant.These models were also derived from GIA modelling; the variations can be attributed to the lack of geological and geographical evidence regarding the history of crustal movement due to ice sheet evolution.Next,we summarise the previously published ice load models and demonstrate the RSL curves based on combinations of different ice and earth models.The RSL curves calculated by GIA models indicate that the model dependence of both the ice and earth models is significantly large at several sites where RSL observations were obtained.In particular,GIA predictions based on the thin lithospheric thickness show the spatial distributions that are dependent on the melted ice thickness at each sites.These characteristics result from the short-wavelength deformation of the Earth.However,our predictions strongly suggest that it is possible to find the average ice model despite the use of the different models of lithospheric thickness.By sea level and crustal movement observations,we can deduce the geometry of the post-LGM ice sheets in detail and remove the GIA contribution from the crustal deformation and gravity change observed by space geodetic techniques,such as GPS and GRACE,for the estimation of the Antarctic ice mass change associated with recent global warming.  相似文献   
87.
We present precise geodetic and satellite observation-based estimations of the erupted volume and discharge rate of magma during the 2011 eruptions of Kirishima-Shinmoe-dake volcano, Japan. During these events, the type and intensity of eruption drastically changed within a week, with three major sub-Plinian eruptions on January 26 and 27, and a continuous lava extrusion from January 29 to 31. In response to each eruptive event, borehole-type tiltmeters detected deflation of a magma chamber caused by migration of magma to the surface. These measurements enabled us to estimate the geodetic volume change in the magma chamber caused by each eruptive event. Erupted volumes and discharge rates were constrained during lava extrusion using synthetic aperture radar satellite imaging of lava accumulation inside the summit crater. Combining the geodetic volume change and the volume of lava extrusion enabled the determination of the erupted volume and discharge rate during each sub-Plinian event. These precise estimates provide important information about magma storage conditions in magma chambers and eruption column dynamics, and indicate that the Shinmoe-dake eruptions occurred in a critical state between explosive and effusive eruption.  相似文献   
88.
89.
90.
The spatiotemporal distribution of Cretaceous–Paleogene granitic rocks in southwestern Japan is investigated to understand the origin of the granitic batholith belt and to reconstruct the tectonic setting of emplacement. New U–Pb zircon ages for 92 samples collected from a region measuring 50 km (E–W) by 200 km (N–S) reveals a stepwise northward younging of granitic rocks aged between 95 and 30 Ma with an age‐data gap between 60 and 48 Ma. Based on the spatiotemporal distribution of granite ages, we examine two plausible models to explain the pattern of magmatic activity: (i) subduction of a segmented spreading ridge and subsequent slab melting (ridge‐subduction model), and (ii) subduction with a temporally variable subduction angle and corresponding spatial distribution of normal arc magmatism (subduction angle model). We optimize the model parameters to fit the observed magmatism in time and space, and compare the best‐fit models. As to ridge subduction model, the best‐fit solution indicates that the spreading ridge started to subduct at approximately 100 Ma, and involved a 45‐km‐wide section of the ridge segment, a subduction obliquity of 30°, and a slow migration velocity (~1.6 cm/y) of the ridge. These values are within the ranges of velocities observed for present‐day ridge subduction at the Chile trench. On the other hand, the best‐fit solution of subduction angle model indicates that the subduction angle decreases stepwise from 37° at 95 Ma, 32° at 87 Ma, 22° at 72 Ma, to 20° at 65 Ma, shifting magmatic region towards the continental side. These results and comparison, together with constraints on the geometry of the tectonic setting provided by previous studies, suggest that the ridge subduction model better explains the limited duration of magmatism, although both models broadly fit the data and cannot be ruled out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号