首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   6篇
  国内免费   1篇
大气科学   4篇
地球物理   22篇
地质学   8篇
海洋学   36篇
天文学   6篇
自然地理   8篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
  1974年   1篇
  1964年   2篇
  1959年   1篇
排序方式: 共有84条查询结果,搜索用时 390 毫秒
21.
22.
Three petrographic provinces can be recognized in the Cenozoic volcanic fields of Japan and surrounding areas. A province of a tholeiite series lies on the Pacific side of the Japanese Islands and includes the Izu Islands, whereas that of an alkali rock series occupies the Japan Sea side of the Islands with a narrow offshoot extending across central Honsyū (Honshū) and a continuation westward to Korea and Manchuria. A province of a calc-alkali rock series is superposed on the two provinces and occupies the greater part of the Japanese Islands exclusive of the Izu Islands and the islands in the Japan Sea southwest of Honsyū and north of Kyūsyū (Kyūshū). The boundary lines between the tholeiite and alkali provinces are located very closely to those between the areas where earthquakes occur at depths shallower than about 200 km and those for deeper ones. It is suggested that the parental tholeiite magma is produced by partial melting of the periodotite layer at depths shallower than 200 km. In the Izu Islands, except Nii-zima(Nii-jima) and Kōzu-sima(Kōzu-shima) close to Honsyū, the magma erupts to the surface without assimilating granitic material because the granitic layer is absent, resulting in volcanoes made up exclusively of the tholeiite series. The parental alkali olivine basalt magma is produced by partial melting of the peridotite layer at depths greater than 200 km. In the Japan Sea region, Korea, and Manchuria, it erupts to the surface without assimilating the granitic material, although it passes through a thick granitic layer, resulting in volcanoes made up exclusively of the alkali series. However, in the Cenozoic orogenic belt of the Japanese Islands, both types of parental magma assimilate granitic material during passage to the surface and erupt to form volcanoes of the calc-alkali series.  相似文献   
23.
Abstract. Bottom-simulating reflectors suggestive of the presence of methane hydrates are widely distributed below the ocean floor around Japan. In late 1999, drilling of the MITI Nankai Trough wells was conducted to explore this potential methane hydrate resource and a Tertiary conventional structure. The wells are located in the Northwest Pacific Ocean off Central Japan at a water depth of 945 m. A total of six wells were drilled, including the main well, two pilot wells, and three post survey wells at intervals of 10–100 m. All wells except the first confirmed the occurrence of hydrates based on logging-while-drilling, wire-line logging and/or coring using a pressure and temperature coring system in addition to conventional methods. Based on the various well profiles, four methane hydrate-bearing sand-rich intervals in turbidite fan deposits were recognized. Methane hydrates fill the pore spaces in these deposits, reaching saturation of up to 80 % in some layers. The methane hydrate-bearing turbiditic sand layers are less than 1 m thick, with a total thickness of 12–14 m. The bottom depth of high hydrate concentration correlates well with the depth of the bottom-simulating reflector. Based on these exploration results, the Japanese government inaugurated a 16-year methane hydrate exploitation program in 2001.  相似文献   
24.
Size-separated aerosol number concentrations and water-soluble constituents were measured in Toyama, the Hokuriku district, near the coast of the Japan Sea, during the spring and summer in 2003. The number concentrations of coarse particles were significantly high in April, which was due to Asian dust events called Kosa in Japanese. Particulate nssCa2+, which is mostly present in the coarse-mode particles, was significantly high in April. On the other hand, the concentrations of NH4+ and nssSO42−, which mainly exist as the accumulation-mode particles were not high in April. The mass-size distributions of water-soluble constituents were compared with the size-separated number concentrations of particles. Backward trajectory analysis was also employed to examine the transport process of the air mass in Toyama.  相似文献   
25.
Magnetic and electric field variations associated with the 2000 eruption of Miyake-jima volcano are summarized. For about 1 week prior to the July 8 phreatic explosion, significant changes in the total intensity were observed at a few stations, which indicated uprising of a demagnetized area from a depth of 2 km towards the summit: this non-magnetic source can be regarded as a vacant space itself. Electric and magnetic field variations were observed simultaneously associated with the tilt-step event, which was the abrupt (∼50 s) inflation at a few km depth within the volcano followed by gradual recovery (∼several hours). The electric field is ascribed to the electrokinetic effect most probably due to forced injection of fluids from the source, while the magnetic field to the piezomagnetic effect due to increased pressure. Large magnetic variations amounting to a few tens of nT were observed at several stations since July 8, and they turned almost flat after the August 18 largest eruption. Magnetic changes are explained mostly by the vanishing of magnetic mass in the summit and additionally by the thermal demagnetization at a rather shallow depth. A large increase in the self-potential by 130 mV was also observed near the summit caldera associated with the August 18 eruption, which suggests that the hydrothermal circulation system sustained within the volcano for the past more than 10 years was destroyed by this eruption.  相似文献   
26.
27.
Over 300 samples for paleomagnetic analysis and K–Ar dating were collected from 27 sites at NW–SE and NE–SW trending dike swarms (herein, NW dikes and NE dikes, respectively) in the Koshikijima Islands, northern Ryukyu Arc. The NW dikes are Middle Miocene in age and have directions (D = ? 37.7°, I = 51.8°, α95 = 9.6°, and κ = 40.8) that are deflected westward relative to the stable eastern Asian continent. Conversely, the NE dikes, of Late Miocene age, have directions (D = 16.1°, I = 57.7°, α95 = 7.1°, and κ = 41.9) that show no such deflection. These differences are interpreted as indicating that the Koshikijima Islands underwent approximately 40° of counter-clockwise rotation during the Middle to Late Miocene. A synthesis of the paleomagnetic and structural data suggests a three-stage history of extensional deformation: (1) displacement upon normal faults (F1 faults) without vertical-axis block rotation, (2) strike-slip reactivation of F1 faults and oblique-normal displacement on NE–SW-trending faults (F2 faults) with vertical-axis block rotation, and (3) oblique-normal displacement on F2 faults without vertical-axis block rotation. Regional differences in the timing and amount of counter-clockwise vertical-axis block rotations indicate that the northern Ryukyu Arc rotated as several distinct rigid blocks.  相似文献   
28.
Supracrustal rocks around the North Pole Dome area, Western Australia, provide valuable information regarding early records of the evolution of crustal processes, surface environments, and biosphere. Owing to the occurrence of the oldest known microfossils, the successions at the North Pole Dome area have attracted interest from many researchers. The Paleoarchean successions (Warrawoona Group) mainly comprise mafic‐ultramafic greenstones with intercalated cherts and felsic lavas. Age constraints on the sediments have been mainly based on zircon U–Pb geochronology. However, many zircon grains have suffered from metamictization and contain anomalously high contents of common Pb, which makes interpretation of the U–Pb data complicated. In order to provide more convincing chronological constraints, an U–Pb Concordia age is widely accepted as the best estimate. Most zircons separated from two adamellites also suffered from severe metamictization. In our analyses, less metamictized domains were selected using a pre‐ablation technique in conjunction with elemental mapping, and then their U–Pb isotopic compositions were determined with a laser ablation inductively coupled plasma mass spectrometry. Most analyzed domains contained certain amounts of common Pb (204Pb/206Pb > 0.000 1), whereas three and five U–Pb data points with less common Pb (204Pb/206Pb < 0.000 1) were obtained. These U–Pb datasets yielded U–Pb Concordia ages of ca 3 445 Ma and 3 454 Ma, respectively. These ages represent the timing of the adamellite intrusion, and constrain the minimum depositional age of the Warrawoona Group. In addition, a single xenocrystic zircon grain showed a 207Pb/206Pb age of ca 3 545 Ma, supporting the idea that the sialic basement of the Pilbara Craton existed prior to 3 500 Ma. The in situ U–Pb zircon dating combined with the pre‐ablation technique has the potentials to identify non‐metamictized parts and to yield precise and accurate geochronological data even from partially metamictized zircons.  相似文献   
29.
Zircon is resistant to alteration over a wide range of geological environments, and isotopic ratios within the mineral provide constraints on ages and their parental magmas. Trace element compositions in zircon are also expected to reflect those of their parent magmas, and have a potential as essential indicators for their host rocks. Because most detrital zircons that accumulate at river mouths are derived primarily from granitoids, the classification of zircon within granitoids is potentially meaningful. This study employs the conventional classification scheme of granites (I‐, S‐, M‐, and A‐types). To clarify geochemical characteristics of zircons in A‐type granites, trace element compositions of zircons extracted from the A‐type Ashizuri granitoids were examined. Zircons from the Ashizuri granitoids commonly show enrichments of heavy rare earth elements and positive Ce anomalies, indicating that these zircons were igneous in origin. In addition, zircons in these A‐type granites are characterized by enrichments of Nb, Y, Ta, Th, and U and strong negative Eu anomalies, which exhibit good positive correlations with those in their whole rocks. This fact indicates that these signatures in zircons reflect well those in their parental bodies and are useful in identifying zircons derived from A‐type granite. Based on compilations of available data, zircons from A‐type granites can be clearly discriminated from other‐types of granites within Nb/Sr–Eu anomaly, U/Sr–Eu anomaly, Nb/Sr–U/Sr, and Nb/Sr–Ta/Sr cross‐plots. All indices used in these diagrams were selected based on the geochemical features of both zircon and whole rock of A‐type granites. Application of these discrimination diagrams to detrital zircons will likely provide further insights. For example, some Hadean detrital zircons plot in similar fields to A‐type granites, implying the existence of A‐type magmatism in the Earth's earliest history.  相似文献   
30.
Mare basalts provide insights into the composition and thermal history of the lunar mantle. The ages of mare basalts suggest a first peak of magma activity at 3.2–3.8 Ga and a second peak at ~2 Ga. In this study, we reassess the correlation between the titanium contents and the eruption ages of mare basalt units using the compositional and chronological data updated by SELENE (Kaguya). Using morphological and geological criteria, we calculated the titanium content of 261 mare units across a representative area of each mare unit. In the Procellarum KREEP Terrane, where the latest eruptions are located, an increase in the mean titanium content is observed during the Eratosthenian period, as reported by previous studies. We found that the increase in the mean titanium content occurred within a relatively short period near approximately 2.3 Ga, suggesting that the magma source of the mare basalts changed at this particular age. Moreover, the high‐titanium basaltic eruptions are correlated with a second peak in volcanic activity near ~2 Ga. The high‐titanium basaltic eruptions occurring during the last volcanic activity period can be explained by the three possible scenarios (1) the ilmenite‐bearing cumulate rich layer in the core‐mantle boundary formed after the mantle overturn, (2) the basaltic material layers beneath the lunar crust formed through upwelling magmas, and (3) ilmenite‐bearing cumulate blocks remained in the upper mantle after the mantle overturn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号