首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
  国内免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   21篇
地质学   10篇
海洋学   11篇
天文学   2篇
综合类   3篇
自然地理   8篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1993年   2篇
  1987年   1篇
  1985年   1篇
排序方式: 共有57条查询结果,搜索用时 328 毫秒
21.
22.
In order to understand the characteristics of shallow very low-frequency (VLF) events as revealed by recent ocean-floor observation studies, we perform a trial simulation of earthquake cycles in the Tonankai district by taking the characteristics of the 1944 Tonankai earthquake and assuming that slow earthquakes occur on numerous small asperities. Our simulation results show that the increase of moment release rate of shallower VLF events in the pre-seismic stage of a megathrust earthquake is higher than that of deeper VLF events. This increase may make leveling change due to VLF swarms detectable at Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET). We also introduce the time series of hydraulic pressure data at DONET, comparing with the leveling change expected from our numerical simulation. Since leveling change due to shallower VLF swarms is so local as to be incoherent, removal of the moving-averaged data from the data stacked by four nearby observation points in the same node may be useful to detect the short-term local leveling change.  相似文献   
23.
The pattern of the ionospheric electric field around the westward travelling surge (WTS) is theoretically studied. This is obtained by solving the current continuity equation at the ionospheric altitude for temporal and spatial development of the field-aligned current density modelled as the WTS phenomenon. The results show that the divergence of the ionospheric electric field is significantly changed depending on the dawn-to-dusk convection electric field E0 because of non-uniformity in the ionospheric conductivity: the ionospheric electric field diverges in the upward current region (around the head of the WTS) when a westward electric field E0 of 10 mV m−1 is uniformly applied. On the other hand, the ionospheric electric field converges without E0. From the observational inference that the ionospheric electric field converges around the head of the WTS, it is suggested that the WTS phenomenon may not be accounted for by the discharging process in the presence of the enhanced dawn-to-dusk convection electric field and non-uniform conductivity as was studied by previous authors.  相似文献   
24.
In mean-field dynamo theory, the electromotive force term 〈u′ × B′〉 due to small-scale fields connects the small-scale magnetic field with the large-scale field. This term is usually approximated as the α-effect, assumed to be instantaneous in time and local in space. However, the approximation is valid only when the magnetic Reynolds number Rm is much less than unity, and is inappropriate when Rm ? 1, which is the condition satisfied in the Earth's core or solar convection zone. We introduce a function φ qr as a non-local and non-instantaneous generalization of the usual α-effect and examine its behaviour as a function of Rm in the range 1/64 ≤ Rm ≤ 10 for a kinematic dynamo model. We use the flow of G.O. Roberts 1972 Roberts, GO. 1972. Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. Roy. Soc. London Ser. A, 271: 411454. [Crossref], [Web of Science ®] [Google Scholar] (Phil, Trans. Roy. Soc. London Ser. A, 1972, 271, 411–454), which is steady and has non-zero helicities and two-dimensional periodicity. As a result, we identify three regions in Rm space according to the behaviour of the function φ qr : (i) Rm ? 1/4, where the function φ qr is local and instantaneous and can be approximated by the traditional α and β effects, (ii) 1/4 ? Rm ? 4, where the deviation from the traditional α and β effects increases and non-localness and non-instantaneousness increase, and (iii) Rm ? 4, where boundary layers develop fully and non-localness and non-instantaneousness are prominent. We show that the non-local memory effect for Rm ? 4 strongly affects the dynamo action and explains an observed augmentation of the growth rate in the dispersion relation. The results imply that the non-local memory effect of the electromotive force should be important in the geodynamo or the solar dynamo.  相似文献   
25.
26.
The seismic structural response is affected by temporal and spatial variations in strong ground motion. It can be evaluated through the fault‐structure system: the fault mechanism, wave propagation through the crust, amplification near the surface, and soil‐structure interaction. To analyze this system at high resolution and accuracy, we previously proposed a new multiscale analysis method and numerically verified its validity. However, the problem of the extremely large computation cost of constructing a three‐dimensional numerical model and solving the discretized governing equations still remains. Here, we introduce a new method to resolve these difficulties. By combining this new method with our multiscale analysis, we developed a tool for fault‐structure system analysis. The accuracy of this tool is verified by comparing it to a Green's function solution. Finally, we demonstrate the potential utility of the method by estimating the seismic response of a large and complex underground highway junction in a given earthquake scenario. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
27.
Fluvial tufa deposits in southwest Japan commonly develop biannual lamination consisting of dense summer layers and porous winter layers, and the clearness of the laminae varies among the sites. The laminae have been largely attributed to a seasonally variable inorganic precipitation rate of calcite. This rate-controlled hypothesis was examined by using quantitative data for calcite packing-density (CPD) and the precipitation rate of calcite (PWP rate) calculated from water chemistry. The results for four tufa-depositing sites in SW Japan show that a positive correlation between CPD and PWP rate becomes less certain with increasing PWP rate. In the temperature realm of SW Japan, tufas develop regular distinct seasonal change in CPD when deposited in water containing Ca values less than 65 mg/l, which results in a relatively low precipitation rate. The CPD of tufa deposits rarely exceeds 65%, owing to pore space between fine-grained calcite crystals and to porosity derived from decomposed cyanobacteria and other microorganisms. By increasing the Ca content to more than 65 mg/l, the CPD often attains an upper limit and becomes insensitive to seasonal changes in the PWP rate. Therefore, seasonal variations in CPD at sites with a higher Ca content are unclear, as seen in two examples from tropical islands in southern Japan and in one locality in a temperate climate. The flow rate and microbial density on the tufa surface are subordinate factors with respect to the CPD. Seasonal changes in these two factors often enhance the porous/dense contrast of biannual lamination in SW Japan.  相似文献   
28.
Recently, the occurrence of slow earthquakes such as low-frequency earthquakes and very low-frequency earthquakes have been recognized at depths of about 30 km in southwest Japan and Cascadia. These slow earthquakes occur sometimes in isolation and sometimes break into chain-reaction, producing tremor that migrates at a speed of about 5–15 km/day and suggesting a strong interaction among nearby small asperities. In this study, we formulate a 3-D subduction plate boundary model with two types of small asperities chained along the trench at the depth of 30 km. Our simulation succeeds in representing various types of slow earthquakes including low-frequency earthquakes and rapid slip velocity in the same asperity, and indicates that interaction between asperities may cause the very low-frequency earthquakes. Our simulation also shows chain reaction along trench with propagation speed that can be made consistent with observations by adjusting model parameters, which suggests that the interactions also explain the observed migration of slow earthquakes.  相似文献   
29.
Long-term monitoring of water quality and phytoplankton was conducted at 19 sampling stations in Harima-Nada, eastern Seto Inland Sea, Japan for 35 years from 1973 to 2007. There were two significant long-term changes, an increase in winter water temperatures of 0.042°C year?1, and a decrease in dissolved inorganic nitrogen (DIN) from about 10 μM in the 1970s to ~5 μM in the late 1990s due to the reduction in nutrient inputs. DIN concentrations and total phytoplankton cell density were both higher during the 1970s to the early 1980s and then exhibited a significant decrease in the mid 1980s and remained relatively constant thereafter. Diatoms were the dominant phytoplankton group (>90%) over the 35-year period, and there was a dramatic shift from Skeletonema dominance (~70%) to Chaetoceros in the mid 1980s. This shift in diatom species may be attributed to differences in the life cycle of Skeletonema and Chaetoceros and the response to the decrease in DIN concentration.  相似文献   
30.
Much research has been conducted for physics‐based ground‐motion simulation to reproduce seismic response of soil and structures precisely and to mitigate damages caused by earthquakes. We aimed at enabling physics‐based ground‐motion simulations of complex three‐dimensional (3D) models with multiple materials, such as a digital twin (high‐fidelity 3D model of the physical world that is constructed in cyberspace). To perform one case of such simulation requires high computational cost and it is necessary to perform a number of simulations for the estimation of parameters or consideration of the uncertainty of underground soil structure data. To overcome this problem, we proposed a fast simulation method using graphics processing unit computing that enables a simulation with small computational resources. We developed a finite‐element‐based method for large‐scale 3D seismic response analysis with small programming effort and high maintainability by using OpenACC, a directive‐based parallel programming model. A lower precision variable format was introduced to achieve further speeding up of the simulation. For an example usage of the developed method, we applied the developed method to soil liquefaction analysis and conducted two sets of simulations that compared the effect of countermeasures against soil liquefaction: grid‐form ground improvement to strengthen the earthquake resistance of existing houses and replacement of liquefiable backfill soil of river wharves for seismic reinforcement of the wharf structure. The developed method accelerates the simulation and enables us to quantitatively estimate the effect of countermeasures using the high‐fidelity 3D soil‐structure models on a small cluster of computers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号