首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   22篇
  国内免费   12篇
测绘学   7篇
大气科学   28篇
地球物理   88篇
地质学   91篇
海洋学   109篇
天文学   8篇
综合类   7篇
自然地理   8篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   9篇
  2018年   23篇
  2017年   15篇
  2016年   27篇
  2015年   19篇
  2014年   19篇
  2013年   31篇
  2012年   24篇
  2011年   22篇
  2010年   18篇
  2009年   11篇
  2008年   12篇
  2007年   20篇
  2006年   7篇
  2005年   21篇
  2004年   12篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
排序方式: 共有346条查询结果,搜索用时 343 毫秒
141.
Groundwater responses at 15 monitoring wells on Jeju Island were observed in relation to the magnitude 9.0 Tohoku Earthquake off the Pacific coast of Honshu, Japan, on 11 March 2011, at 14:46:23 h local time (05:46:24 h UTC time). In coastal areas, the groundwater level responses to the earthquake were oscillatory at 12 wells, and the range of the maximum groundwater level changes was 3–192.4 cm. The response durations were approximately 1–62 min. The relationship between the maximum groundwater level changes and the response durations displayed a high correlation coefficient (r = 0.81). Groundwater temperature changes were also observed at 7 of 12 wells 3–10 min after the seismic wave arrived, and the range was from 0.01 °C to 1.20 °C. In mid‐elevation areas, the groundwater level changes appeared in three different forms: oscillatory, spiky and persistent. The groundwater temperature changes were also observed at two wells. One indicated decreasing and recovering temperatures, and the other exhibited rising and persistent temperatures. The primary temperature changes occurred 5–6 min after the earthquake and 2–3 min after the seismic wave arrived. In addition, the electrical conductivities at the depth of the transition zone were monitored, and the responses to the earthquake appeared at all three wells. Although the electrical conductivity and temperature changes were not well understood, groundwater inflow and mixing were likely caused by the earthquake, and the responses were various and site specific. The responses to the earthquake were closely related to the hydrogeological characteristics at each monitoring well, and a more detailed hydrogeological characterization is needed to understand the mechanisms related to earthquakes in general. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
142.
143.
This paper evaluates whether a thermodynamic ocean-carbon model can be used to predict the monthly mean global fields of the surface-water partial pressure of CO2 (pCO2SEA) from sea surface salinity (SSS), temperature (SST), and/or nitrate (NO3) concentration using previously published regional total inorganic carbon (CT) and total alkalinity (AT) algorithms. The obtained pCO2SEA values and their amplitudes of seasonal variability are in good agreement with multi-year observations undertaken at the sites of the Bermuda Atlantic Timeseries Study (BATS) (31°50’N, 60°10’W) and the Hawaiian Ocean Time-series (HOT) (22°45’N, 158°00’W). By contrast, the empirical models predicted CT less accurately at the Kyodo western North Pacific Ocean Time-series (KNOT) site (44°N, 155°E) than at the BATS and HOT sites, resulting in greater uncertainties in pCO2SEA predictions. Our analysis indicates that the previously published empirical CT and AT models provide reasonable predictions of seasonal variations in surface-water pCO2SEA within the (sub) tropical oceans based on changes in SSS and SST; however, in high-latitude oceans where ocean biology affects CT to a significant degree, improved CT algorithms are required to capture the full biological effect on CT with greater accuracy and in turn improve the accuracy of predictions of pCO2SEA.  相似文献   
144.
Most natural disasters are caused by water‐/climate‐related hazards, such as floods, droughts, typhoons, and landslides. In the last few years, great attention has been paid to climate change, and especially the impact of climate change on water resources and the natural disasters that have been an important issue in many countries. As climate change increases the frequency and intensity of extreme rainfall, the number of water‐related disasters is expected to rise. In this regard, this study intends to analyse the changes in extreme weather events and the associated flow regime in both the past and the future. Given trend analysis, spatially coherent and statistically significant changes in the extreme events of temperature and rainfall were identified. A weather generator based on the non‐stationary Markov chain model was applied to produce a daily climate change scenario for the Han River basin for a period of 2001–2090. The weather generator mainly utilizes the climate change SRES A2 scenario driven by input from the regional climate model. Following this, the SLURP model, which is a semi‐distributed hydrological model, was applied to produce a long‐term daily runoff ensemble series. Finally, the indicator of hydrologic alteration was applied to carry out a quantitative analysis and assessment of the impact of climate change on runoff, the river flow regime, and the aquatic ecosystem. It was found that the runoff is expected to decrease in May and July, while no significant changes occur in June. In comparison with historical evidence, the runoff is expected to increase from August to April. A remarkable increase, which is about 40%, in runoff was identified in September. The amount of the minimum discharge over various durations tended to increase when compared to the present hydrological condition. A detailed comparison for discharge and its associated characteristics was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
145.
Geochemical characteristics of marine sediment from the southern Drake Passage were analyzed to reconstruct variations in sediment provenance and transport paths during the late Quaternary. The 5.95 m gravity core used in this study records paleoenvironmental changes during the last approximately 600 ka. Down-core variations in trace element, rare earth element, and Nd and Sr isotopic compositions reveal that sediment provenance varied according to glacial cycles. During glacial periods, detrital sediments in the southern Drake Passage were mostly derived from the nearby South Shetland Islands and shelf sediments. In contrast, interglacial sediments are composed of mixed sediments, derived from both West Antarctica and East Antarctica. The East Antarctic provenance of the interglacial sediments was inferred to be the Weddell Sea region. Sediment input from the Weddell Sea was reduced during glacial periods by extensive ice sheets and weakened current from the Weddell Sea. Sediment supply from the Weddell Sea increased during interglacial periods, especially those with higher warmth such as MIS 5, 9, and 11. This suggests that the influence of deep water from the Weddell Sea increases during interglacial periods and decreases during glacial periods, with the degree of influence increasing as interglacial intensity increases.  相似文献   
146.
Molecular-scale distributions of Sr2+ and fulvic acid (FA) adsorbed on the muscovite (0 0 1) surface were investigated using in situ specular X-ray reflectivity (XR) and resonant anomalous X-ray reflectivity (RAXR). The total amount of Sr2+ adsorbed from a 1 × 10−2 mol/kg SrCl2 and 100 mg/kg Elliott Soil Fulvic Acid II (ESFA II) solution at pH 5.5 compensated 81 ± 5% of the muscovite surface charge, less than previously measured (118 ± 5%) in an ESFA II-free solution with the same Sr concentration and pH. Inner-sphere (IS) and outer-sphere (OS) Sr2+ constituted 87% of the total adsorbed species in IS:OS proportions of 19:81 compared to 42:58 in the solution without FA, suggesting that adsorbed FA competes with the IS Sr2+ for surface sites. The coverage of both IS and OS Sr2+ decreased even more in a pH 3.5 solution containing the same concentration of FA and 0.5 × 10−2 mol/kg Sr(NO3)2, whereas a significant amount of Sr2+ accumulated farther from the surface in the FA layer. The amount of Sr2+ incorporated in the ∼10 Å thick FA layer decreased by 79% with decreasing FA concentration (100 → 1 mg/kg) and increasing Sr2+ concentration (0.5 × 10−2 → 1 × 10−2 mol/kg) and pH (3.5 → 3.6). These results indicate not only that adsorbed FA molecules (and perhaps also H3O+) displace Sr2+ near the muscovite surface, but also that the sorbed FA film provides binding sites for additional Sr2+ away from the surface. When a muscovite crystal pre-coated with FA after reaction in a 100 mg/kg ESFA II solution for 50 h was subsequently reacted with a 0.5 × 10−2 mol/kg Sr(NO3)2 and 100 mg/kg ESFA II solution at pH 3.7, a significant fraction of Sr2+ was distributed in the outer part of the FA film similar to that observed on fresh muscovite reacted at pH 3.5 with a pre-mixed Sr-FA solution at the same concentrations. However, this Sr2+ sorbed in the pre-adsorbed organic film was more widely distributed and had a lower coverage, suggesting that pre-sorbed FA may undergo fractionation and/or conformational changes that diminish its capacity, and that of the muscovite (0 0 1) surface, for adsorbing the aqueous Sr cation.  相似文献   
147.
Numerical analysis of effects of tidal variations on storm surges and waves   总被引:2,自引:0,他引:2  
This study examines the effects of tides on surges, wave setups and waves, in terms of tidal amplitudes and phases, by using a coupled numerical model of Surge, WAve and Tide (called as SuWAT). The SuWAT model, composed of depth integrated nonlinear shallow water equations and Simulating WAves Nearshore (SWAN) model, is able to simultaneously run with an arbitrary number of nested domains by using the Message Passing Interface. The results for an idealized case indicate that surge and wave setup are increased in the phase of low water and decreased in the high water phase; on the other hand, waves change in a reverse manner. Such changes are enhanced by large tidal variations. The conventional method (e.g., surge plus tide independently) has the possibility of overestimation for the total water level. The hindcast results for Typhoon Ewiniar in 2006 show that the run with tides is more accurate 10% than that without tides in coastal areas of Korea. The nested scheme improves the accuracy up to 40% for the prediction of water levels in the simulations. It is shown that the present coupled model, SuWAT, is capable of predicting both water levels and waves under storm events with reasonable accuracy against the observations.  相似文献   
148.
To investigate the statistical sensitivity distributions of tropical cyclone (TC) forecasts over the Korean Peninsula, total energy (TE) singular vectors (SVs) were calculated and evaluated over a 10-year period. TESVs were calculated using the fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm over a 48-h period. Chosen cases were 21 TCs that affected the Korean Peninsula among 230 TCs that were generated in the western North Pacific from 2001 to 2010. Sensitive regions indicated by TESVs were mainly located near mid-latitude troughs and TC centers but varied depending on TC track and environmental conditions such as subtropical high and mid-latitude trough. The cases were classified into three groups by clustering TC tracks based on the finite mixture model. The two groups that passed through the western and southern sea of the Korean Peninsula had maximally sensitive regions in the mid-latitude trough and largely sensitive regions around the TC center, while the other group that passed straight through the eastern sea of the Korean Peninsula had maximally sensitive regions near the northeastern region of the TC center. Vertically, the former two clustered groups had the westerly tilted TESVs and potential vorticity structures under the mid-latitude troughs at the initial time, indicating the TCs were in a baroclinic environment. Conversely, the straight-moving TCs were not in a baroclinic environment. Based on the results in the present study, the TCs moving toward a fixed verification region over the Korean Peninsula have different sensitivity regions and structures according to their moving tracks and characteristic environmental conditions, which may provide guidance for targeted observations of TCs affecting the Korean Peninsula.  相似文献   
149.
The transition mechanism of stratus cloud into warm sea fog over the Yellow Sea near the western coastal area of the Korean Peninsula is investigated using numerical simulation with a 1D turbulence model, PAFOG, coupled with a 3D regional model, WRF. The coupled model system was run in the two approaches, Eulerian and Lagrangian. For the selected warm sea fog case, the model results in the Eulerian approach showed that the bottom of the stratus cloud was lowered by cooling of the air just below the cloud base by turbulent heat loss. The Lagrangian approach showed the lowering of the stratus cloud top, owing to the evaporation of cloud droplets in this region by the entrainment of warm and dry air above the cloud top. The sensitivity test to SST indicated that the timing of water vapor saturation just below the cloud base depended on the magnitude of the turbulent heat flux from the sea surface. The subsidence rate was found to be important: when the subsidence rate was set to be half of the prescribed value, neither the lowering of the stratus cloud top nor the bottom occurred and the model could not produce a fog.  相似文献   
150.
刘臻 《中国海洋工程》2011,25(1):169-178
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world.The air chamber is utilized to convert the wave energy into the pneumatic energy.The numerical wave tank based on the two-phase VOF model is established in the present study to investigate the operating performance of OWC air chamber.The RANS equations,standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model.The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号