首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   29篇
  国内免费   15篇
测绘学   13篇
大气科学   40篇
地球物理   139篇
地质学   142篇
海洋学   116篇
天文学   30篇
综合类   13篇
自然地理   6篇
  2022年   3篇
  2021年   6篇
  2020年   10篇
  2019年   14篇
  2018年   21篇
  2017年   13篇
  2016年   24篇
  2015年   21篇
  2014年   32篇
  2013年   39篇
  2012年   23篇
  2011年   32篇
  2010年   34篇
  2009年   29篇
  2008年   20篇
  2007年   28篇
  2006年   30篇
  2005年   24篇
  2004年   21篇
  2003年   15篇
  2002年   7篇
  2001年   10篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
排序方式: 共有499条查询结果,搜索用时 406 毫秒
31.
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.  相似文献   
32.
A 5-level spectral AGCM (ImPKU-5LAGCM) is used to examine the sensitivity of the simulated results of the summer monsoon rainfall and circulation in East Asia to different cumulus parameterization schemes in the climatological-mean case and in the cases of weak and strong Asian summer monsoons,respectively. The results simulated with the Arakawa-Schubert's(hereafter A-S's), Kuo's and Manabe's cumulus parameterization schemes show that these simulated distributions of the summer monsoon rainfall and circulation in East Asia depend strongly on the cumulus parameterization schemes either in the climatological-mean case or in the cases of weak and strong Asian summer monsoons. From the simulated results, it might be shown that the Kuo scheme appears to be more suitable for the simulation of the summer monsoon rainfall and circulation in East Asia than the A-S scheme or the Manabe scheme, although the A-S scheme is somewhat better in the simulations of the tropical rainfall. This might be due to that the Kuo's cumulus parameterization scheme is able to reflect well the characteristics of rainfall cloud system in the East Asian summer monsoon region, where the rainfall system used to be a mixing of cumulus and stratus.  相似文献   
33.
A prestack reverse time-migration image is not properly scaled with increasing depth. The main reason for the image being unscaled is the geometric spreading of the wavefield arising during the back-propagation of the measured data and the generation of the forward-modelled wavefields. This unscaled image can be enhanced by multiplying the inverse of the approximate Hessian appearing in the Gauss–Newton optimization technique. However, since the approximate Hessian is usually too expensive to compute for the general geological model, it can be used only for the simple background velocity model.We show that the pseudo-Hessian matrix can be used as a substitute for the approximate Hessian to enhance the faint images appearing at a later time in the 2D prestack reverse time-migration sections. We can construct the pseudo-Hessian matrix using the forward-modelled wavefields (which are used as virtual sources in the reverse time migration), by exploiting the uncorrelated structure of the forward-modelled wavefields and the impulse response function for the estimated diagonal of the approximate Hessian. Although it is also impossible to calculate directly the inverse of the pseudo-Hessian, when using the reciprocal of the pseudo-Hessian we can easily obtain the inverse of the pseudo-Hessian. As examples supporting our assertion, we present the results obtained by applying our method to 2D synthetic and real data collected on the Korean continental shelf.  相似文献   
34.
The neuro‐controller training algorithm based on cost function is applied to a multi‐degree‐of‐freedom system; and a sensitivity evaluation algorithm replacing the emulator neural network is proposed. In conventional methods, the emulator neural network is used to evaluate the sensitivity of structural response to the control signal. To use the emulator, it should be trained to predict the dynamic response of the structure. Much of the time is usually spent on training of the emulator. In the proposed algorithm, however, it takes only one sampling time to obtain the sensitivity. Therefore, training time for the emulator is eliminated. As a result, only one neural network is used for the neuro‐control system. In the numerical example, the three‐storey building structure with linear and non‐linear stiffness is controlled by the trained neural network. The actuator dynamics and control time delay are considered in the simulation. Numerical examples show that the proposed control algorithm is valid in structural control. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
35.
Horizontal and vertical distributions of organochlorine compounds (OCs) were determined in sediments from Masan Bay. The concentrations of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs), HCB, hexachlorocyclohexanes (HCHs) and chlordane related compounds (CHLs) in sediments were in the range of 1.24-41.4, 0.28-89.2, 0.02-0.59, nd-1.03, and nd-2.56 ng/g, respectively. The spatial distribution of OCs showed a negative gradient from the inner of the bay to outer part of the bay, indicating that the source of OCs was probably located inside the bay. Compositional pattern of PCB congeners showed a relatively high concentration of high-chlorinated congeners in the inner part of the bay and a relatively low concentration of low-chlorinated congeners in the outer part. In sediment core from Masan Bay maximum concentrations of PCBs and DDTs are observed in the subsurface samples and correspond to an age of early 1980s and late 1960s. The concentration profiles of PCBs and DDTs in sediments of Masan Bay appear to correspond to use of PCBs and DDTs in Korea.  相似文献   
36.
Climate Warming and Water Management Adaptation for California   总被引:1,自引:3,他引:1  
The ability of California's water supply system to adapt to long-term climatic and demographic changes is examined. Two climate warming and a historical climate scenario are examined with population and land use estimates for the year 2100 using a statewide economic-engineering optimization model of water supply management. Methodologically, the results of this analysis indicate that for long-term climate change studies of complex systems, there is considerable value in including other major changes expected during a long-term time-frame (such as population changes), allowing the system to adapt to changes in conditions (a common feature of human societies), and representing the system in sufficient hydrologic and operational detail and breadth to allow significant adaptation. While the policy results of this study are preliminary, they point to a considerable engineering and economic ability of complex, diverse, and inter-tied systems to adapt to significant changes in climate and population. More specifically, California's water supply system appears physically capable of adapting to significant changes in climate and population, albeit at a significant cost. Such adaptation would entail large changes in the operation of California's large groundwater storage capacity, significant transfers of water among water users, and some adoption of new technologies.  相似文献   
37.
Much of the central-western region of Argentina, where San Juan Province is located, experiences arid to semi-arid climatic conditions with low average annual rainfall accompanied by substantial evapotranspiration. Consequently, a viable crop industry depends to a large extent upon irrigation from major river systems. Increasing demand for water in the lower basin of the San Juan River is emphasizing the need for more accurate estimates of water used for irrigation. Since the water demand for a particular crop is very closely related to crop area, monitoring the area of crop under irrigation is considered a proxy for the amount of water used. Landsat 5 imagery for the growing season, field data and aerial photographs were used to evaluate crop area.  相似文献   
38.
Abstract

Sufficient conditions for stability are established for the magnetic field problem of the Earth's core considered by Braginsky.  相似文献   
39.
This study characterized the redox conditions in arsenic‐affected groundwater aquifers of the Lanyang plain, Taiwan. Discriminant analysis was adopted to delineate three redox zones (oxidative, transitional and reductive zones) in different aquifers and yielded 92·3% correctness on groundwater quality data. Arsenic is mainly distributed in the reductive zone, and arsenic distribution in the shallow aquifer is mainly affected by surface activities. According to PHREEQC modelling results, possible mechanisms for arsenic release to groundwater in Lanyang plain are explored. Arsenic released to groundwater in the oxidative zone (zone 1) is primarily caused by the oxidations of arsenic‐bearing pyrite minerals, and arsenate is the predominant species. While the reductive dissolution of Fe‐oxides are responsible for the high arsenic concentration found in the transitional and reductive zones (zones 2 and 3), arsenite is the predominant species. The reduction potential of groundwater rises as the depths and zones increase. Some sulphates may be reduced to form sulphide ions, which then react with arsenic to form arseno‐sulphide deposits (such as realgar, orpiment) and then slightly lower groundwater arsenic concentrations. A conceptual diagram which summarized the possible release processes of arsenic in different redox zones along groundwater flow in Lanyang plain is postulated. Arsenic‐bearing pyrite and arsenopyrite (FeAsS) are oxidized as they are exposed to the infiltrated oxygenated rainwater, releasing soluble arsenate Fe(II) and SO42? into zone 1. The dissolution of arsenic‐rich Fe‐oxides due to the onset of reducing conditions in zones 2 and 3 is responsible for the mobility of arsenic and likely to be the primary mechanism of arsenic release to groundwater in the Lanyang plain Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
40.
Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of cross‐correlated soil properties is presented and applied to study the bearing capacity of spatially random soil with different autocorrelation distances in the vertical and horizontal directions. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two‐dimensional cross‐correlated non‐Gaussian random fields are generated based on a Karhunen–Loève expansion in a manner consistent with a specified marginal distribution function, an autocorrelation function, and cross‐correlation coefficients. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses was performed to study the effects of uncertainty due to the spatial heterogeneity on the bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to geotechnical problems and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号