首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   11篇
  国内免费   2篇
测绘学   8篇
大气科学   37篇
地球物理   83篇
地质学   194篇
海洋学   35篇
天文学   57篇
自然地理   30篇
  2023年   2篇
  2021年   10篇
  2020年   13篇
  2018年   13篇
  2017年   12篇
  2016年   12篇
  2015年   12篇
  2014年   19篇
  2013年   20篇
  2012年   18篇
  2011年   30篇
  2010年   17篇
  2009年   21篇
  2008年   19篇
  2007年   18篇
  2006年   14篇
  2005年   11篇
  2004年   14篇
  2003年   15篇
  2002年   15篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   13篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   12篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1979年   3篇
  1978年   6篇
  1977年   4篇
  1974年   5篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1969年   2篇
  1966年   1篇
  1957年   1篇
排序方式: 共有444条查询结果,搜索用时 31 毫秒
371.
Crushed rock from two caprock samples, a carbonate-rich shale and a clay-rich shale, were reacted with a mixture of brine and supercritical CO2 (CO2–brine) in a laboratory batch reactor, at different temperature and pressure conditions. The samples were cored from a proposed underground CO2 storage site near the town of Longyearbyen in Svalbard. The reacting fluid was a mixture of 1 M NaCl solution and CO2 (110 bar) and the water/rock ratio was 20:1. Carbon dioxide was injected into the reactors after the solution had been bubbled with N2, in order to mimic O2-depleted natural storage conditions. A control reaction was also run on the clay-rich shale sample, where the crushed rock was reacted with brine (CO2-free brine) at the same experimental conditions. A total of 8 batch reaction experiments were run at temperatures ranging from 80 to 250 °C and total pressures of 110 bar (∼40 bar for the control experiment). The experiments lasted 1–5 weeks.Fluid analysis showed that the aqueous concentration of major elements (i.e. Ca, Mg, Fe, K, Al) and SiO2 increased in all experiments. Release rates of Fe and SiO2 were more pronounced in solutions reacted with CO2–brine as compared to those reacted with CO2-free brine. For samples reacted with the CO2–brine, lower temperature reactions (80 °C) released much more Fe and SiO2 than higher temperature reactions (150–250 °C). Analysis by SEM and XRD of reacted solids also revealed changes in mineralogical compositions. The carbonate-rich shale was more reactive at 250 °C, as revealed by the dissolution of plagioclase and clay minerals (illite and chlorite), dissolution and re-precipitation of carbonates, and the formation of smectite. Carbon dioxide was also permanently sequestered as calcite in the same sample. The clay-rich shale reacted with CO2–brine did not show major mineralogical alteration. However, a significant amount of analcime was formed in the clay-rich shale reacted with CO2-free brine; while no trace of analcime was observed in either of the samples reacted with CO2–brine.  相似文献   
372.
The Central Asian Orogenic Belt contains many Precambrian crustal fragments whose origin is unknown, and previous speculations suggested these to be derived from either Siberia, Tarim or northern Gondwana. We present an age pattern for detrital and xenocrystic zircons from Neoproterozoic to Palaeozoic arc and microcontinental terranes in Mongolia and compare this with patterns for Precambrian rocks in southern Siberia, the North China craton, the Tarim craton and northeastern Gondwana in order to define the most likely source region for the Mongolian zircons. Our data were obtained by SHRIMP II, LA-ICP-MS and single zircon evaporation and predominantly represent arc-related low-grade volcanic rocks and clastic sediments but also accretionary wedges and ophiolitic environments.The Mongolian pattern is dominated by zircons in the age range ca. 350–600 and 700–1020 Ma as well as minor peaks between ca. 1240 and 2570 Ma. The youngest group reflects cannibalistic reworking of the Palaeozoic arc terranes, whereas the Neoproterozoic to late Mesoproterozoic peak reflects both reworking of the arc terranes as well as Neoproterozoic rifting and a Grenville-age crust-formation event.The 700–1020 Ma peak does not exist in the age spectra of the Siberian and North China cratons and thus effectively rules out these basement blocks as potential source areas for the Mongolian zircons. The best agreement is with the Tarim craton where a major Grenville-age orogenic event and early Neoproterozoic rifting have been identified. The age spectra also do not entirely exclude northeastern Gondwana as a source for the Mongolian zircons, but here the Neoproterozoic age peak is related to the Pan-African orogeny, and a minor Grenville-age peak may reflect a controversial orogenic event in NW India.Our Mongolian detrital and xenocrystic age spectrum suggests that the Tarim craton was the main source, and we favour a tectonic scenario similar to the present southwestern Pacific where fragments of Australia are rifted off and become incorporated into the Indonesian arc and microcontinent amalgamation that will evolve into a future orogenic belt.  相似文献   
373.
374.
The North Sea Benthos Project 2000 was initiated as a follow-up to the 1986 ICES North Sea Benthos Survey with the major aim to identify changes in the macrofauna species distribution and community structure in the North Sea and their likely causes.The results showed that the large-scale spatial distribution of macrofauna communities in the North Sea hardly changed between 1986 and 2000, with the main divisions at the 50 m and 100 m depth contours. Water temperature and salinity as well as wave exposure, tidal stress and primary production were influential environmental factors on a large (North Sea-wide) spatial scale.The increase in abundance and regional changes in distribution of various species with a southern distribution in the North Sea in 2000 were largely associated with an increase in sea surface temperature, primary production and, thus, food supply. This can be most likely related to the North Sea hydro-climate change in the late 1980s influenced by the variability in the North Atlantic Oscillation (NAO). Only one cold-temperate species decreased in abundance in 2000 at most of the stations. Indications for newly established populations of offshore non-native species were not found.Differences in macrofauna community structure on localised spatial scales were predominantly found north of the 50 m depth contour off the British coast along the Flamborough Head Front towards the Dogger Bank, off the coast of Jutland and at the Frisian Front. These changes were most likely attributed to stronger frontal systems in 2000 caused by the increased inflow of Atlantic water masses in relation to the hydro-climate change in the late 1980s.  相似文献   
375.
The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identified in the study area. Turbidity currents and deposition of glacigenic debris flows are the dominating downslope processes, whereas mass failures, which are a common process on glaciated margins, appear to have been less significant. The slide debrite observed on the Bellsund Fan is most likely related to a 2.5–1.7 Ma old failure on the northwestern Barents Sea margin. The seismic records further reveal that alongslope current processes played a major role in shaping the sediment packages in the study area. Within the Knipovich rift valley and at the western rift flank accumulations as thick as 950–1,000 m are deposited. We note that oceanic basement is locally exposed within the rift valley, and that seismostratigraphic relationships indicate that fault activity along the eastern rift flank lasted until at least as recently as 1.5 Ma. A purely hemipelagic origin of the sediments in the rift valley and on the western rift flank is unlikely. We suggest that these sediments, partly, have been sourced from the western Svalbard—northwestern Barents Sea margin and into the Knipovich Ridge rift valley before continuous spreading and tectonic activity caused the sediments to be transported out of the valley and westward.  相似文献   
376.
Several bodies of granulites comprising charnockite, charno-enderbite, pelitic and calc-silicate rocks occur within an assemblage of granite gneiss/granitoid, amphibolite and metasediments (henceforth described as banded gneisses) in the central part of the Aravalli Mountains, northwestern India. The combined rock assemblage was thought to constitute an Archaean basement (BGC-II) onto which the successive Proterozoic cover rocks were deposited. Recent field studies reveal the occurrence of several bodies of late-Palaeoproterozoic (1725 and 1621 Ma) granulites within the banded gneisses, which locally show evidence of migmatization at c. 1900 Ma coeval with the Aravalli Orogeny. We report single zircon ‘evaporation’ ages together with information from LA-ICP-MS U-Pb zircon datings to confirm an Archaean (2905 — ca. 2500 Ma) age for the banded gneisses hosting the granulites. The new geochronological data, therefore, suggest a polycyclic evolution for the BGC-II terrane for which the new term Sandmata Complex is proposed. The zircon ages suggest that the different rock formations in the Sandmata Complex are neither entirely Palaeoproterozoic in age, as claimed in some studies nor are they exclusively Archaean as was initially thought. Apart from distinct differences in the age of rocks, tectono-metamorphic breaks are observed in the field between the Archaean banded gneisses and the Palaeoproterozoic granulites. Collating the data on granulite ages with the known tectono-stratigraphic framework of the Aravalli Mountains, we conclude that the evolution and exhumation of granulites in the Sandmata Complex occurred during a tectono-magmatic/metamorphic event, which cannot be linked to known orogenic cycles that shaped this ancient mountain belt. We present some field and geochronologic evidence to elucidate the exhumation history and tectonic emplacement of the late Palaeoproterozoic, high P-T granulites into the Archaean banded gneisses. The granulite-facies metamorphism has been correlated with the thermal perturbation during the asymmetric opening of Delhi basins at around 1700 Ma.  相似文献   
377.
The aim of this modelling work is to assess shape changes of cometary nuclei caused by sublimation of ices. The simplest possible model is assumed with the nucleus being initially spherical and its thermal conductivity being neglected. We have calculated the time-dependent sublimation flux versus cometographic latitude. If the rotation axis of the comet is inclined to the orbital plane, then sublimation leads to non-symmetrical changes of the nucleus shape. Calculations were performed for the nuclei of comets Hale–Bopp and Wirtanen.  相似文献   
378.
379.
The role of non-gravitational forces in the evolution of orbitalmotion of C/1995 O1 (Hale–Bopp) has been investigated. Inorbital calculations the observational material covering theperiod from April 1993 up to August 2001 was used. To model thenon-gravitational acceleration, observed and theoretical profilesof the H2O production rates were employed. A set of forcedprecession models of a rotating cometary nucleus consistent withthe observed spin axis orientation was fitted to positionalobservations. The non-gravitational models allowed us to constrainthe mass and radius of the comet. The orbitalevolution of Comet Hale–Bopp was investigated over ±400 k yusing two sets of randomly varied orbital elements wellrepresenting all positional observations in the pure gravitationalcase, as well as in the non-gravitational case. The calculationsshowed that the comet's motion is predictable only over an interval ofa few orbital periods. The statistical conclusions changesignificantly when non-gravitational effects are included in the analysis.  相似文献   
380.
The Ronda orogenic peridotite (southern Spain) contains a varietyof pyroxene-rich rocks ranging from high-pressure garnet granulitesand pyroxenites to low-pressure plagioclase–spinel websterites.The ‘asthenospherized’ part of the Ronda peridotitecontains abundant layered websterites (‘group C’pyroxenites), without significant deformation, that occur asswarms of layers showing gradual modal transitions towards theirhost peridotites. Previous studies have suggested that theselayered pyroxenites formed by the replacement of refractoryspinel peridotites. Here, we present a major- and trace-element,and numerical modelling study of a layered outcrop of groupC pyroxenite near the locality of Tolox aimed at constrainingthe origin of these pyroxenites after host peridotites by pervasivepyroxene-producing, refertilization melt–rock reactions.Mg-number [= Mg/(Mg + Fe) cationic ratio] numerical modellingshows that decreasing Mg-number with increasing pyroxene proportion,characteristic of Ronda group C pyroxenites, can be accountedfor by a melt-consuming reaction resulting in the formationof mildly evolved, relatively low Mg-number melts (0·65)provided that the melt fraction during reaction and the time-integratedmelt/rock ratio are high enough (>0·1 and > 1,respectively) to balance Mg–Fe buffering by peridotiteminerals. This implies strong melt focusing caused by melt channellingin high-porosity domains resulting from compaction processesin a partial melted lithospheric domain below a solidus isothermrepresented by the Ronda peridotite recrystallization front.The chondrite-normalized rare earth element (REE) patterns ofgroup C whole-rocks and clinopyroxenes are convex-upward. Numericalmodeling of REE variations in clinopyroxene produced by a pyroxene-forming,melt-consuming reaction results in curved trajectories in the(Ce/Nd)N vs (Sm/Yb)N diagram (where N indicates chondrite normalized).Based on (Ce/Nd)N values, two transient, enriched domains betweenthe light REE (LREE)-depleted composition of the initial peridotiteand that of the infiltrated melt may be distinguished in thereaction column: (1) a lower domain characterized by convex-upwardREE patterns similar to those observed in Ronda group C pyroxenite–peridotite;(2) an upper domain characterized by melts with strongly LREE-enrichedcompositions. The latter are probably volatile-rich, small-volumemelt fractions residual after the refertilization reactionsthat generated group C pyroxenites, which migrated throughoutthe massif—including the unmelted lithospheric spinel-tectonitedomain. The Ronda mantle domains affected by pyroxenite- anddunite- or harzburgite-forming reactions (the ‘layeredgranular’ subdomain and ‘plagioclase-tectonite’domain) are on average more fertile than the residual, ‘coarsegranular’ subdomain at the recrystallization front. Thisindicates that refertilization traces the moving boundariesof receding cooling of a thinned and partially melted subcontinentallithosphere. This refertilization process may be widespreadduring transient thinning and melting of depleted subcontinentallithospheric mantle above upwelling asthenospheric mantle. KEY WORDS: subcontinental mantle; refertilization; pyroxenite; peridotite; websterite; melt–rock reaction; plagioclase; trace elements  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号