首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68724篇
  免费   1514篇
  国内免费   493篇
测绘学   1778篇
大气科学   5704篇
地球物理   14403篇
地质学   22575篇
海洋学   5838篇
天文学   15525篇
综合类   138篇
自然地理   4770篇
  2020年   519篇
  2019年   520篇
  2018年   1029篇
  2017年   1020篇
  2016年   1512篇
  2015年   1106篇
  2014年   1541篇
  2013年   3408篇
  2012年   1547篇
  2011年   2376篇
  2010年   2046篇
  2009年   3055篇
  2008年   2755篇
  2007年   2463篇
  2006年   2527篇
  2005年   2178篇
  2004年   2270篇
  2003年   2099篇
  2002年   2020篇
  2001年   1826篇
  2000年   1789篇
  1999年   1545篇
  1998年   1546篇
  1997年   1511篇
  1996年   1312篇
  1995年   1249篇
  1994年   1138篇
  1993年   1017篇
  1992年   963篇
  1991年   825篇
  1990年   1036篇
  1989年   875篇
  1988年   776篇
  1987年   953篇
  1986年   830篇
  1985年   1053篇
  1984年   1219篇
  1983年   1161篇
  1982年   1049篇
  1981年   1011篇
  1980年   864篇
  1979年   837篇
  1978年   907篇
  1977年   806篇
  1976年   761篇
  1975年   720篇
  1974年   731篇
  1973年   744篇
  1972年   451篇
  1971年   398篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0–2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.  相似文献   
993.
994.
995.
JGOFS has revealed the importance of marine biological activity to the global carbon cycle. Ecological models are valuable tools for improving our understanding of biogeochemical cycles. Through a series of workshops, the North Pacific Marine Science Organization (PICES) developed NEMURO (North Pacific Ecosystem Model Understanding Regional Oceanography) a model, specifically designed to simulate the lower trophic ecosystem in the North Pacific Ocean. Its ability to simulate vertical fluxes generated by biological activities has not yet been validated. Here compare NEMURO with several other lower trophic level models of the northern North Pacific. The different ecosystem models are each embedded in a common three-dimensional physical model, and the simulated vertical flux of POM and the biomass of phytoplankton are compared. The models compared are: (1) NEMURO, (2) the Kishi and Nakata Model (Kishi et al., 1981), (3) KKYS (Kawamiya et al., 1995, 2000a, 2000b), and (4) the Denman model (Denman and Peña, 2002). With simple NPZD models, it is difficult to describe the production of POM (Particulate Organic Matter) and hence the simulations of vertical flux are poor. However, if the parameters are properly defined, the primary production can be well reproduced, even though none of models we used here includes iron limitation effects. On the whole, NEMURO gave a satisfactory simulation of the vertical flux of POM in the northern North Pacific.  相似文献   
996.
Several years of continuous physical and biological anomalies have been affecting the Bering Sea shelf ecosystem starting from 1997. Such anomalies reached their peak in a striking visual phenomenon: the first appearance in the area of bright waters caused by massive blooms of the coccolithophore Emiliania huxleyi (E. huxleyi). This study is intended to provide an insight into the mechanisms of phytoplankton succession in the south-eastern part of the shelf during such years and addresses the causes of E. huxleyi success by means of a 2-layer ecosystem model, field data and satellite-derived information. A number of potential hypotheses are delineated based on observations conducted in the area and on previous knowledge of E. huxleyi general ecology. Some of these hypotheses are then considered as causative factors and explored with the model. The unusual climatic conditions of 1997 resulted most notably in a particularly shallow mixed layer depth and high sea surface temperature (about 4 °C above climatological mean). Despite the fact that the model could not reproduce for E. huxleyi a clear non-bloom to bloom transition (pre- vs. post-1997), several tests suggest that this species was favoured by the shallow mixed layer depth in conjunction with a lack of photoinhibition. A top-down control by microzooplankton selectively grazing phytoplankton other than E. huxleyi appears to be responsible for the long persistence of the blooms. Interestingly, observations reveal that the high N:P ratio hypothesis, regarded as crucial in the formation of blooms of this species in previous studies, does not hold on the Bering Sea shelf.  相似文献   
997.
998.
Artificial reefs are spatially complex habitats and serve as good model systems to study patterns of community succession and the response of epibiota to environmental clines over small spatial scales. Here, we quantified spatial heterogeneity in community composition and diversity of fouling communities across a number of environmental gradients that included water depth, surface orientation of habitats, exposure to currents, and shelter. Assemblage structure was quantified by spatially replicated photo transects on a recently scuttled large navy ship off the East Australian coast, lying in 27 m of water. A rich assemblage of epifauna had colonized the wreck within a year, dominated by barnacles, sponges and bryozoans. Community structure varied significantly over small spatial scales of meters to tens of meters. Depth, surface orientation and exposure were the major environmental drivers. Assemblages were substantially less diverse and abundant on the deepest (23 m near the seafloor) part of the hull with residual antifouling paint, on sheltered surfaces inside the wreck, and on the sediment‐laden horizontal surfaces. Overall, the wrecks’ habitat complexity corresponds with small‐scale heterogeneity in the fouling communities. This study supports the notion that wrecks enhance local diversity and biomass within the habitat mosaic of their location, and habitat complexity may be an important mechanism for this, as demonstrated by the large spatial variability in the assemblages documented here.  相似文献   
999.
1000.
The seismic expression of a salt-filled channel which cuts across the Mid North Sea High in Quadrant 37 is described, with features interpreted as being produced by salt-edge dissolution forming both eastern and western margins of the channel. The apparent half-graben nature of the channel is shown to be only superficial, and due to complex faulting associated with, but not defining, its western margin. The shallower faulting here is a Mesozoic to early Tertiary growth fault related to local dissolution of Zechstein salt. The dissolution effect appears in turn to have been localized by the presence of a deeper fault that was already downthrown to the east in Zechstein times, when it seems to have limited the eastward progradation of Zechstein shelf carbonates and anhydrites, and had probably ceased to move significantly before the onset of the Late Cimmerian erosional phase. The origin of this arcuate fault is tentatively ascribed to subsidence around a granite batholith. Zechstein salt originally spread some distance to the east and west of the channel; it was dissolved from the edges inwards, mainly before the Late Cretaceous, giving rise to a thicker Mesozoic sequence on parts of the flanks of the channel than in the middle. Besides providing an interesting structural case history, the features described have implications regarding Zechstein sedimentation, reservoir potential, the tectonic history of the North Sea, and the nature of the Mid North Sea High itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号