首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
大气科学   3篇
地球物理   6篇
地质学   20篇
海洋学   7篇
天文学   10篇
自然地理   4篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2001年   4篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有50条查询结果,搜索用时 234 毫秒
11.
At least two episodes of glacial erosion of the Chukchi margin at water depths to ∼ 450 m and 750 m have been indicated by geophysical seafloor data. We examine sediment stratigraphy in these areas to verify the inferred erosion and to understand its nature and timing. Our data within the eroded areas show the presence of glaciogenic diamictons composed mostly of reworked local bedrock. The diamictons are estimated to form during the last glacial maximum (LGM) and an earlier glacial event, possibly between OIS 4 to 5d. Both erosional events were presumably caused by the grounding of ice shelves originating from the Laurentide ice sheet. Broader glaciological settings differed between these events as indicated by different orientations of flutes on eroded seafloor. Postglacial sedimentation evolved from iceberg-dominated environments to those controlled by sea-ice rafting and marine processes in the Holocene. A prominent minimum in planktonic foraminiferal δ18O is identified in deglacial sediments at an estimated age near 13,000 cal yr BP. This δ18O minimum, also reported elsewhere in the Amerasia Basin, is probably related to a major Laurentide meltwater pulse at the Younger Dryas onset. The Bering Strait opening is also marked in the composition of late deglacial Chukchi sediments.  相似文献   
12.
Magnesium silicate precipitation experiments were carried out in alkaline solutions in the temperature range 39°C-150°C. Titrations were carried out at room temperature where the pH of an aqueous solution containing magnesium and silica was raised to bring about precipitation of a magnesium silicate. The precipitation of the magnesium silicate was rapid. Equilibrium between the solution and the precipitate was attained in a period of less than one hour up to a month at around 90°C, depending on the initial degree of oversaturation. Relative magnesium and silica depletion in the experimental solutions and IR spectra of the precipitate show that the magnesium silicate resembles poorly developed antigorite (p-antigorite). Values for its solubility constant were obtained and an equation describing its solubility in the temperature interval 0°-200°C calculated. The equation is: log Ksp = 9303/T + 3.283, where T is in K, and it is valid for the following reaction:
  相似文献   
13.
Lake Vättern represents a critical region geographically and dynamically in the deglaciation of the Fennoscandian Ice Sheet. The outlet glacier that occupied the basin and its behaviour during ice‐sheet retreat were key to the development and drainage of the Baltic Ice Lake, dammed just west of the basin, yet its geometry, extent, thickness, margin dynamics, timing and sensitivity to regional retreat forcing are rather poorly known. The submerged sediment archives of Lake Vättern represent a missing component of the regional Swedish deglaciation history. Newly collected geophysical data, including high‐resolution multibeam bathymetry of the lake floor and seismic reflection profiles of southern Lake Vättern, are used here together with a unique 74‐m sediment record recently acquired by drill coring, and with onshore LiDAR‐based geomorphological analysis, to investigate the deglacial environments and dynamics in the basin and its terrestrial environs. Five stratigraphical units comprise a thick subglacial package attributed to the last glacial period (and probably earlier), and an overlying >120‐m deglacial sequence. Three distinct retreat–re‐advance episodes occurred in southern Lake Vättern between the initial deglaciation and the Younger Dryas. In the most recent of these, ice overrode proglacial lake sediments and re‐advanced from north of Visingsö to the southern reaches of the lake, where ice up to 400 m thick encroached on land in a lobate fashion, moulding crag‐and‐tail lineations and depositing till above earlier glacifluvial sediments. This event precedes the Younger Dryas, which our data reveal was probably restricted to north‐central sectors of the basin. These dynamics, and their position within the regional retreat chronology, indicate a highly active ice margin during deglaciation, with retreat rates on average 175 m a?1. The pronounced topography of the Vättern basin and its deep proglacial‐dammed lake are likely to have encouraged the dynamic behaviour of this major Fennoscandian outlet glacier.  相似文献   
14.
Using key dates associated with solar interaction regions (SIR), a superposed epoch analysis is performed on the zonal and meridional kinetic energy density and square of the vorticity (enstrophy) of the main motion at 500 mb height. No relationships are found between SIR and these atmospheric dynamical parameters irrespective of the polarity (North or South) of the enhanced interplanetary magnetic fields (IMF) within the SIR, or with latitude and season. This investigation and other available results suggest that the short term solar variations do not influence large volumes of the troposphere but only localized regions.The average atmospheric kinetic energy density during active solar conditions is higher than during quiet solar condition, with no significant differences in enstrophy. This confirms an earlier result.It is also shown that SIR with enhanced southward directed IMF correspond to higher level of geomagnetic index (Ap > 10, Kp > 3) than randomly selected days.  相似文献   
15.
We have obtained U - and R -band observations of the depletion of background galaxies resulting from the gravitational lensing of the galaxy cluster CL0024+1654 ( z =0.39). The radial depletion curves show a significant depletion in both bands within a radius of 40–70 arcsec from the cluster centre. This is the first time that depletion is detected in the U band. This gives independent evidence for a break in the slope of the U -band luminosity function at faint magnitudes. The radially averaged R -band depletion curve is broader and deeper than in the U band. The differences can be attributed to the wavelength dependence of the slope of the luminosity function and to the different redshift distribution of the objects probed in the two bands. We estimate the Einstein radius, r E, of a singular isothermal sphere lens model using maximum-likelihood analysis. Adopting a slope of the number counts of α =0.2 and using the background density found beyond r =150 arcsec, we find r E=17±3 and 25±3 arcsec in the U and R bands, respectively. When combined with the redshift of the single background galaxy at z =1.675 seen as four giant arcs around 30 arcsec from the cluster centre, these values indicate a median redshift in the range 〈 z S〉≈0.7 to 1.1 for the U AB≥24 mag and R AB≥24 mag populations.  相似文献   
16.
The mass of volatiles emitted during volcanic eruptions is often estimated by comparing the volatile contents of undegassed melt inclusions, trapped in crystals at an early stage of magmatic evolution, with that of the degassed matrix glass. Here we present detailed characterisation of magmatic volatiles (H2O, CO2, S, Fl and Cl) of crystal-hosted melt and fluid inclusions from the 2014–2015 Holuhraun eruption of the Bárðarbunga volcanic system, Iceland. Based on the ratios of magmatic volatiles to similarly incompatible trace elements, the undegassed primary volatile contents of the Holuhraun parental melt are estimated at 1500–1700 ppm CO2, 0.13–0.16 wt% H2O, 60–80 ppm Cl, 130–240 ppm F and 500–800 ppm S. High-density fluid inclusions indicate onset of crystallisation at pressures?≥?0.4 GPa (~?12 km depth) promoting deep degassing of CO2. Prior to the onset of degassing, the melt CO2 content may have reached 3000–4000 ppm, with the total magmatic CO2 budget estimated at  23–55 Mt. SO2 release commenced at 0.12 GPa (~?3.6 km depth), eventually leading to entrapment of SO2 vapour in low-density fluid inclusions. We calculate the syn-eruptive volatile release as 22.2 Mt of magmatic H2O, 5.9–7.7 Mt CO2, and 11.3 Mt of SO2 over the course of the eruption; F and Cl release were insignificant. Melt inclusion constraints on syn-eruptive volatile release are similar to estimates made during in situ field monitoring, with the exception of H2O, where field measurements may be heavily biased by the incorporation of meteoric water.  相似文献   
17.
Arctic Ocean manganese contents and sediment colour cycles   总被引:5,自引:0,他引:5  
Cyclical variations in colour and manganese content in sediments from the central Arctic Ocean have been interpreted to represent climatically controlled changes in the input of Mn from the Siberian hinterland, and/or variations in the intermediate and deep water ventilation of the Arctic basins, although a diagenetic origin has not been excluded. A reinvestigation of core 96/12-1pc using an Itrax X-ray fluoresence (XRF) core scanner confirms that these colour cycles are indeed controlled by variations in Mn content, although changes in the source region of the sediment may override the Mn colour signal in certain intervals. The prominent Mn cycles show no correspondence to any of the other measured elements. This decoupling of Mn and the bulk chemistry of the sediment is taken to indicate that the cycles observed are caused by variations in water column ventilation and riverine input, rather than variations in sediment source or diagenesis. We therefore conclude that the Mn maxima do represent warm phases with increased ventilation and/or riverine input, and that they therefore could be used for chronostratigraphic correlation between cores from the central Arctic Ocean, where traditional isotope stratigraphy is difficult or impossible to establish because of the lack of calcareous microfossils.  相似文献   
18.
19.
A standard lithostratigraphic model based on cores retrieved 1963–1973 from the ice island T-3 was developed by Clark et al. [Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean. Geological Society of America Special Paper, 181, 1–57, 1980] for the Amerasian Basin of the Arctic Ocean. We have investigated whether or not it is possible to apply this lithostratigraphy to cores from the Lomonosov Ridge, which can be correlated to Eurasian Basin cores, for the purpose of correlating the Amerasian and Eurasian stratigraphies. Published averaged sedimentary proxies from a selected set of T-3 cores are used to correlate with the identical published proxies for the included Lomonosov Ridge cores. The standard lithostratigraphic classification could not be applied to the Lomonosov Ridge cores, which is interpreted to result from differences in sedimentary regimes in the Amerasian and Eurasian Basins. These differences also apply to the barrier between the two basins, the Lomonosov Ridge. The general sedimentation rates are three to four times lower in the Amerasian Basin than in the Eurasian Basin if the first down-core paleomagnetic inclination change is used to correlate between the two basins whereas correlation based on sediment coarse fraction suggests only two times lower rates in the Amerasian Basin.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号