首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   14篇
  国内免费   2篇
测绘学   16篇
大气科学   49篇
地球物理   127篇
地质学   265篇
海洋学   67篇
天文学   119篇
综合类   5篇
自然地理   83篇
  2021年   10篇
  2020年   4篇
  2019年   13篇
  2018年   6篇
  2017年   12篇
  2016年   11篇
  2015年   10篇
  2014年   19篇
  2013年   53篇
  2012年   17篇
  2011年   27篇
  2010年   33篇
  2009年   32篇
  2008年   31篇
  2007年   28篇
  2006年   21篇
  2005年   33篇
  2004年   33篇
  2003年   14篇
  2002年   25篇
  2001年   8篇
  2000年   27篇
  1999年   17篇
  1998年   21篇
  1997年   8篇
  1996年   6篇
  1995年   11篇
  1994年   7篇
  1993年   7篇
  1992年   7篇
  1991年   10篇
  1990年   6篇
  1989年   15篇
  1988年   10篇
  1987年   13篇
  1986年   13篇
  1985年   10篇
  1984年   14篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   13篇
  1979年   3篇
  1978年   14篇
  1976年   4篇
  1974年   7篇
  1973年   5篇
  1971年   2篇
  1970年   4篇
  1912年   2篇
排序方式: 共有731条查询结果,搜索用时 265 毫秒
661.
New radar images (resolution 1.5–2.0 km) obtained from the Arecibo Observatory are used to assess the geology of a portion of the equatorial region of Venus (1 S to 45 N and from 270 eastward to 30). Nine geologic units are mapped on the basis of their radar characteristics and their distribution and correspondences with topography are examined. Plains are the most abundant unit, make up 80%; of the area imaged, and are divided into bright, dark, and mottled. Mottled plains contain abundant lava flows and domes suggesting that volcanism forming plains is a significant process in the equatorial region of Venus. Tesserae are found primarily on Beta Regio and its eastern flank and are interpreted to be locally stratigraphically older units, predating episodes of faulting and plains formation. Isolated regions of tesserae concentrated to the north of Western Eistla Regio are interpreted to predate the formation of plains in this area. The volcanoes Sif Mons, Gula Mons, Sappho, Theia Mons, and Rhea Mons, are found exclusively in highland regions and their deposits are interpreted as contributing only a small percentage to the overall volume of the regional topography. The northern 15 of the image data overlap with Venera 15/16 images making it possible to examine the characteristics of geologic units mapped under various illumination directions and incidence angles. Surface panoramas and geochemical data obtained from Venera landers provide ground truth for map units, evidence that plains are made up of basaltic lava flows, and that linear deformation zones contain abundant blocks and cobbles. On the basis of spatial and temporal relationships between geologic units, the highlands of Beta Regio and Western Eistla Regio are interpreted to have formed in association with areas of mantle upwelling which uplift plains, cause rifting, and in the case of Beta Regio, disrupt a large region of tessera. Zones of linear belt deformation in Beta Regio and Western Eistla Regio are interpreted to be extensional and indicate that at least limited extension has occurred in both regions. The images reveal for the first time that southern Devana Chasma is a region of overlapping rift valleys separated by a distance of 600 km. Linear deformation zones in Guinevere Planitia, separating Beta Regio and Eistla Regio, converge at a region of ovoids forming a discontinuous zone of disruption and completes an equatorial encompassing network of highlands and tectonic features. The similarity between ovoids and coronae suggests a mechanism of formation associated with hotspots or mantle plumes. Analysis of the distribution and density of impact craters suggests a surface age for this part of the planet similar to or slightly less than that determined for the northern high latitudes from Venera 15/16 data (0.3 to 1.5 by) and comparable to that calculated for the southern hemisphere.  相似文献   
662.
663.
Predictive vegetation modeling is defined as predicting the distribution of vegetation across a landscape based upon its relationship with environmental factors. These models generally ignore or attempt to remove spatial dependence in the data. When explicitly included in the model, spatial dependence can increase model accuracy. We develop presence/absence models for 11 vegetation alliances in the Mojave Desert with classification trees and generalized linear models, and use geostatistical interpolation to calculate spatial dependence terms used in the models. Results were mixed across models and methods, but in general, the spatial dependence terms more consistently increased model accuracy for widespread alliances. GLMs had higher accuracy in general.  相似文献   
664.
665.
666.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure distributions of the siderophile elements V, Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in Fremdlinge with a spatial resolution of 15 to 25 μm. A sulfide vein in a refractory inclusion in Allende (CV3-oxidized) is enriched in Rh, Ru, and Os with no detectable Pd, Re, Ir, or Pt, indicating that Rh, Ru, and Os were redistributed by sulfidation of the inclusion, causing fractionation of Re/Os and other siderophile element ratios in Allende CAIs. Fremdlinge in compact Type-A inclusions from Efremovka (CV3-reduced) exhibit subsolidus exsolution into kamacite and taenite and minimal secondary formation of V-magnetite and schreibersite. Siderophile element partitioning between taenite and kamacite is similar to that observed previously in iron meteorites, while preferential incorporation of the light PGEs (Ru, Rh, Pd) relative to Re, Os, Ir, and Pt by schreibersite was observed. Fremdling EM2 (CAI Ef2) has an outer rim of P-free metal that preserves the PGE signature of schreibersite, indicating that EM2 originally had a phosphide rim and lost P to the surrounding inclusion during secondary processing. Most Fremdlinge have chondrite-normalized refractory PGE patterns that are unfractionated, with PGE abundances derived from a small range of condensation temperatures, ∼1480 to 1468 K at Ptot = 10−3 bar. Some Fremdlinge from the same CAI exhibit sloping PGE abundance patterns and Re/Os ratios up to 2 × CI that likely represent mixing of grains that condensed at various temperatures.  相似文献   
667.
The problem of the effect of a strongly magnetic star on a surrounding accretion disc is considered. For stellar rotation periods greater than a critical value, a numerical solution is found for a steady disc with turbulent magnetic diffusion, including electron scattering opacity and radiation pressure. Inside the corotation radius, the extraction of disc angular momentum by magnetic coupling to the star becomes strong and this leads to enhanced viscous stress and dissipation. The resulting elevated temperature causes electron scattering opacity and radiation pressure to become significant further from the star than in the absence of its magnetic field. The disc ends as its height increases rapidly due to the large central pressure, its density decreases and magnetically induced viscous instability occurs.  相似文献   
668.
The 1986 eruption of B fissure at Izu-Oshima Volcano, Japan, produced, among other products, one andesite and two basaltic andesite lava flows. Locally the three flows resemble vent-effused holocrystalline blocky or aa lava; however, remnant clast outlines can be identified at most localities, indicating that the flows were spatter fed or clastogenic. The basaltic andesite flows are interpreted to have formed by two main processes: (a) reconstitution of fountain-generated spatter around vent areas by syn-depositional agglutination and coalescence, followed by extensional non-particulate flow, and (b) syn-eruptive collapse of a rapidly built spatter and scoria cone by rotational slip and extensional sliding. These processes produced two morphologically distinct lobes in both flows by: (a) earlier non-particulate flow of agglutinate and coalesced spatter, which formed a thin lobe of rubbly aa lava (ca. 5 m thick) with characteristic open extension cracks revealing a homogeneous, holocrystalline interior, and (b) later scoria-cone collapse, which created a larger lobe of irregular thickness (<20 m) made of large detached blocks of scoria cone interpreted to have been rafted along on a flow of coalesced spatter. The source regions of these lava flows are characterized by horseshoe-shaped scarps (<30 m high), with meso-blocks (ca. 30 m in diameter) of bedded scoria at the base. One lava flow has a secondary lateral collapse zone with lower (ca. 7 m) scarps. Backward-tilted meso-blocks are interpreted to be the product of rotational slip, and forward-tilted blocks the result of simple toppling. Squeeze-ups of coalesced spatter along the leading edge of the meso-blocks indicate that coalescence occurred in the basal part of the scoria cone. This low-viscosity, coalesced spatter acted as a lubricating layer along which basal failure of the scoria cone occurred. Rotational sliding gave way to extensional translational sliding as the slide mass spread out onto the present caldera floor. Squeeze-ups concentrated at the distal margin indicate that the extensional regime changed to one of compression, probably as a result of cooling of the flow front. Sliding material piled up behind the slowing flow front, and coalesced spatter was squeezed up from the interior of the flow through fractures and between rafted blocks. The andesite flow, although morphologically similar to the other two flows, has a slightly different chemical composition which corresponds to the earliest stage of the eruption. It is a much smaller lava flow emitted from the base of the scoria cone 2 days after the eruption had ceased. This lava is interpreted to have been formed by post-depositional coalescence of spatter under the influence of the in-situ cooling rate and load pressure of the deposit. Extrusion occurred through the lower part of the scoria cone, and subsequent non-particulate flow of coalesced material produced a blocky and aa lava flow. The mechanisms of formation of the lava flows described may be more common during explosive eruptions of mafic magma than previously envisaged. Received: 30 May 1997 / Accepted: 19 May 1998  相似文献   
669.
In the last decade there was a large increase in the number of VLBI antennas around the world, both for radioastronomy and geodesy. This increase is connected to the dramatic improvements in their results, in particular for geodesy. In Europe a network of six antennas, spanning from Sweden to Spain and Italy, one of the world's most densely spaced VLBI networks of fixed antenna, has been operating since 1990. This network was enlarged during 1994 with the Crimea and Ny-Alesund antennas. More are under construction in Russia. The first five years of activity have produced more than 20 purely European experiments of very good quality allowing the measurements of the horizontal velocities of Italian stations with errors at the mm yr−1 level. The very latest results from Bologna solutions are presented. The future evolution of the technique at the stations and at the correlator is also presented.  相似文献   
670.
Structurally hosted lode gold-bearing quartz vein systems in metamorphic terranes possess many characteristics in common, spatially and through time; they constitute a single class of epigenetic precious metal deposit, formed during accretionary tectonics or delamination. The ore and alteration paragenesis encode numerous intensive and extensive variables that constrain the pressure—temperature—time—deformation—fluid (P—T—t—d—f) evolution of the host terrane and hence the origin of the deposits. The majority of lode gold deposits formed proximal to regional translithospheric terrane—boundary structures that acted as vertically extensive hydrothermal plumbing systems; the structures record variably thrust, and transpressional—transtensional displacements. Major mining camps are sited near deflections, strike slip or thrust duplexes, or dilational jogs on the major structures. In detail most deposits are sited in second or third order splays, or fault intersections, that define domains of low mean stress and correspondingly high fluid fluxes. Accordingly, the mineralization and associated alteration is most intense in these flanking domains. The largest lode gold mining camps are in terranes at greenschist facies; they possess greenschist facies hydrothermal alteration assemblages developed in cyclic ductile to brittle deformation that reflects interseismic—coseismic cycles. Interseismic episodes involve the development of ductile S—C shear zone fabrics that lead to strain softening. Pressure solution and dislocation glide microstructures signify low differential stress, slow strain rates of ≤ 10−13 s−1, relatively high confining stress, and suprahydrostatic fluid pressures. Seismic episodes are induced by buildup of fluid pressures to supralithostatic levels that induce hydraulic fracturing with enhanced hydraulic conductivity, accompanied by massive fluid flow that in turn generates mineralized quartz veins. Hydrothermal cementing of ductile fabrics creates ‘hardening’, lowers hydraulic conductivity, and hence promotes fault valve behaviour. Repeated interseismic (fault valve closed), coseismic (valve open) cycles results in banded and/or progressively deformed veins. Alteration during both interseismic and coseismic episodes typically involves the hydrolysis of metamorphic feldspars and Fe, Mg, Ca-silicates to a muscovite/paragonite—chlorite ± albite/K-feldspars assemblage; carbonization of the metamorphic minerals to Ca, Fe, Mg-carbonates; and sulphidation of Fe-silicates and oxides to sulphides. Geochemically this is expressed as additions of K, Rb, Ba, Cs, and the volatiles H2O, CO2, CH4, H2S in envelopes of meter to kilometer scale. K/Rb and K/Ba ratios are close to average crustal values, potentially ruling out late stage magmatic fluids where K/Rb and K/Ba are respectively lower and higher than crustal values. Smaller deposits are present in subgreenschist, and amphibolite to granulite facies terranes. The former are characterized by subgreenschist facies alteration assemblages, vein stockworks, brittle fracturing and cataclastic microstructures, whereas the latter feature amphibolite to granulite facies alteration assemblages, ductile shear zones, ductilely deformed veins, and microstructures indicative of dislocation climb during interseismic episodes. Hence the lode gold deposits constitute a crustal continuum of deposits from subgreenschist to granulite facies, that all formed synkinematically in broad thermal and rheological equilibrium with their host terranes. These characteristics, combined with the low variance of alteration assemblages in the higher temperature deposits, rules out those being metamorphosed counterparts of greenschist facies deposits. Deposits at all grades have a comparable metal inventory with high concentrations of Au and Ag, where Au/Ag averages 5, with enrichments of a suite of rare metals and semi-metals (As, Sb, ± Se, Te, Bi, W, Mo and B), but low enrichments of the base (Cu, Pb, Zn, Cd) and other transition (Cr, Ni, Co, V, PGE, Sc) metals relative to average crust. The hydrothermal ore-forming fluids were dilute, aqueous, carbonic fluids, with salinities generally ≤ 3 wt.% NaCl equivalent, and X(CO2 ± CH4) 10–24 wt.%. They possess low Cl but relatively high S, possibly reflecting the fact that metamorphic fluids are generated in crust with ∼ 200 ppm Cl, but ∼ 1 wt.%S. Primary fluid inclusions are: (1) H2OCO2, (2) CO2-rich with variable CH4 and small amounts of H2O, and (3) 2-phase H2O (liquid-vapor) inclusions. Inclusion types 2 and 3 represent immiscibility of the type 1 original ore fluid. Immiscibility was triggered by fluid pressure drop during the coseismic events and possibly by shock nucleation, leading to highly variably homogenization temperatures in an isothermal system. A thermodynamic evaluation of alteration assemblages constrains the ore fluid pH to 5–6; redox controlled by the HSO4/H2S and CO2/CH4 buffers; and XCO2 that varies. The higher temperature deposits formed under marginally more oxidizing conditions. Stable isotope systematics of the ore and gangue minerals yields temperatures of 200–420°C, consistent with the crustal spectrum of the deposits, very high fluid rock ratios, and disequilibrium of the externally derived ore fluids with wall rocks. The ore fluid δD and δ18O overlap the metamorphic and magmatic ranges, but the total dataset for all deposits is consistent only with dominantly metamorphic fluids. Carbon isotope compositions of carbonates span −11 to +2% and show provinciality: this is consistent with variable proportions of reduced C (low δ13C) and oxidized C (higher δ13C) in the source regions contributing CO2 and CH4 to the ore fluids. In some instances, C appears to have been derived dominantly from proximal to the deposits, as in the Meguma terrane (δ13C ∼ − 22%). Sulphur isotope compositions range from 0 to +9‰, and are consistent with magmatic S, dissolution or desulphidation of magmatic sulphides, or average crustal sulphides. 34S-depleted sulphides occur in ore bodies such as Hemlo where fluid immiscibility led to loss of H2S and consequent fluid oxidation. Gold is probably transported as an Au(HS)2 complex. Relatively high S but low Cl in the hydrothermal fluid may explain the high Au slow base metal characteristic of the deposits. Gold precipitated in ore bodies due to loss of S from the ore fluid by sulphidation of wall rock, or immiscibility of H2S; and by oxidation or reduction of the fluid, or by chemisorption, or some combination of these processes. Most lode gold deposits have been brittly reactivated during uplift of host terranes, with secondary brines or meteoric water advecting through the structures. These secondary fluids may remobilize gold, generate retrograde stable isotope shifts, reset mineral geochronometers, and leave trails of secondary fluid inclusions. Data on disturbed minerals has led to invalid models for lode gold deposits. The sum of alteration data leads to a model for lode gold deposits involving a clockwise P—T—t evolution and synkinematic and synmetamorphic mineralization of the ‘deep later’ type. During terrane accretion oceanic crust and sediments are subcreted beneath the terrane boundary. Thermal equilibration generates metamorphic fluids that advect up the terrane structure, at lithostatic fluid pressure, into the seismogenic zone where the majority of deposits form. Thus many lode gold deposits are on intrinsic part of the development of subduction—accretion complexes of the high-T, low-P type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号