首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5364篇
  免费   1343篇
  国内免费   48篇
测绘学   113篇
大气科学   195篇
地球物理   2566篇
地质学   2319篇
海洋学   377篇
天文学   764篇
综合类   11篇
自然地理   410篇
  2022年   6篇
  2021年   63篇
  2020年   80篇
  2019年   220篇
  2018年   254篇
  2017年   336篇
  2016年   405篇
  2015年   395篇
  2014年   425篇
  2013年   559篇
  2012年   372篇
  2011年   388篇
  2010年   369篇
  2009年   300篇
  2008年   323篇
  2007年   243篇
  2006年   205篇
  2005年   237篇
  2004年   186篇
  2003年   184篇
  2002年   162篇
  2001年   145篇
  2000年   125篇
  1999年   65篇
  1998年   38篇
  1997年   26篇
  1996年   34篇
  1995年   33篇
  1994年   35篇
  1993年   17篇
  1992年   32篇
  1991年   33篇
  1990年   30篇
  1989年   22篇
  1988年   19篇
  1987年   25篇
  1986年   26篇
  1985年   27篇
  1984年   35篇
  1983年   30篇
  1982年   26篇
  1981年   28篇
  1980年   20篇
  1979年   16篇
  1978年   19篇
  1977年   19篇
  1976年   18篇
  1975年   16篇
  1974年   20篇
  1973年   14篇
排序方式: 共有6755条查询结果,搜索用时 390 毫秒
71.
This paper presents the preliminary results of phytolith analyses of a peat located in the cerrado of the Uberaba municipality, State of Minas Gerais, Brazil. The phytolith soil sequence is discussed by comparison with phytolith assemblages extracted from dominant plants (Cyperaceae and Poaceae). Increasing mean age of phytolith assemblages with depth is assumed. Poaceae Cuneiform bulliform cell, Parallelepiped bulliform cell and Elongate smooth long cell types dominate up to 80 cm, rapidly drop to 42% at 80 cm and regularly decrease from 42% to 2% upwards. Cyperaceae Rondel concave type shows the inverse trend, being dominant in the upper part of the profile. This pattern can be assigned to increasing selective dissolution of the Cyperaceae phytolith type with depth, or/and to a decrease of water stress suffered by the grasses, leading to a decrease of bulliform cell silicification. Soil processes and paleo-environmental changes hypotheses are discussed.  相似文献   
72.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
73.
Strike–slip faults are often accompanied by a variety of structures, particularly at their tips. The zones of additional fracturing are classified as tip‐damage zones. These zones can be subdivided into several different damage patterns based on the nature and orientation of faults and fractures developed. Damage zones at the ends of small strike–slip faults (mode II tips) develop wing cracks, horsetail splays, antithetic faults, synthetic branch faults and solution surfaces. Similar tip‐damage patterns are also commonly observed at larger (regional) scales, but with a dominance of faulting over tensile cracks and solution surfaces. Wing cracks and horsetail splays developed at small‐scale faults are replaced by normal faults in large‐scale faults. Antithetic faults and synthetic branch faults are observed at small and large scales. Thrust faults are developed at large scales, in a similar pattern to solution surfaces at a small scale. All these structures may show slightly different angular relationships to the master fault at small and large scale, but develop in response similar stress distribution and mechanics around the fault. Thus, mode II tip‐damage zones show similar patterns over a wide range of fault scales.  相似文献   
74.
75.
The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.

Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.

The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.

The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block.  相似文献   

76.
Many Vertisols in Tigray, Ethiopia, typically carry a discontinuous rock fragment (RF, size 0.5–> 40 · 10− 2 m) cover with 10 to 100 RFs m− 2. Such RF mulches are of agricultural and environmental significance because they influence the water balance in the underlying soils and the crop yield. Natural RF concentrations are mostly considered as eolian or hydraulic lag deposits, or as the result of lateral transport over the soil surface from a rock outcrop, upslope. In cultivated areas RF mulches can develop by tillage.This paper presents the case of a natural RF mulch whose lithology indicates that the RFs are up-squeezed by the local Vertisol. The study site is located in the pass of Enda Maryam, Tigray, Northern Ethiopia (39°8′ E and 13°36′ N). A circular area of 10 m diameter, about 200 m away from the water divide in the valley has been cleared annually between 01/1999 and 05/2003. During this period, 625 RFs, 17 being > 7.5 · 10− 2 m in size, totalling a mass of nearly 62 kg, have been collected. After correction for measurement procedures, the rate of RF up-warping by the Vertisol at Enda Maryam is assessed at 5 RFs m− 2 in 3 years. At this rate of appearance, the formation of current RF concentrations on top of active valley Vertisols is only a matter of 101–2 years, provided the availability of RFs below the soil surface.Although important underground displacements were measured in the Vertisol between 01/1999 and 05/2002, the supposed link between up-squeezing of RFs and plastic deformations of ‘chimney’, ‘diapir’ or ‘intrusion’-like type in the Vertisol could not be evidenced. Instead, RFs are clearly concentrated on the soil surface as well as in depth, along the existing vertical desiccation cracks, often > 1 m deep which display polygonal configurations at the soil surface. Further, bundles of slickensides containing some RFs, have been mapped at the base of the Vertisol. The slickenside configuration suggests that the RF-bearing substrate is being scraped off.While the underground displacement of RFs along active slickensides seems normal, the process of RFs ascending in ‘upright’ position in the edge of desiccation cracks needs explanation. The closure of a desiccation crack is a peristaltic-like movement, following ascent or descent of the capillary fringe. It is hypothesized that this movement gradually pushes the RF to the surface or to another place or level in the soil profile where the crack closes in last instance.The apparent young age of the valley Vertisol mulches in Ethiopia might indicate the very recent formation of yearly recurrent desiccation cracks of Vertisols in the area. Available information confirms that most valleys in the study area used to be perennially marshy. Under these conditions no movements of RFs in the soil profile are expected to occur. Gullying, leading to pronounced seasonal desiccation of the Vertisols, started in several cases not more than 50 years ago.  相似文献   
77.
The U.S. and U.K. literatures have discussed “food deserts,” reflecting populated, typically urban, low‐income areas with limited access to full‐service supermarkets. Less is known about supermarket accessibility within Canadian cities. This article uses the minimum distance and coverage methods to determine supermarket accessibility within the city of Edmonton, Canada, with a focus on high‐need and inner‐city neighborhoods. The results show that for 1999 both of these areas generally had higher accessibility than the remainder of the city, but six high‐need neighborhoods had poor supermarket accessibility. We conclude by examining potential reasons for differences in supermarket accessibility between Canadian, U.S., and U.K. cities.  相似文献   
78.
Digital elevation model (DEM) images provide synoptic views of the Earth’s surface allowing the analysis of landforms of still active tectonic and volcanic structures at regional scale. A DEM at 250 m pixel size constitutes regional scale data particularly efficient to investigate the late Miocene–Quaternary deformation of the Eastern Turkish–Armenian Plateau in the Arabian–Eurasian area of convergence. Geomorphic analysis of the DEM image associated with review of fault-plane solutions of earthquakes show that faults are mostly strike-slip with small vertical component. Here we show that the orientations of the tectonic and volcanic structures fit with a tectonic regime characterized by N–S shortening and E–W lengthening, consistent with westward escape of Anatolia perpendicular to the direction of the Arabia–Eurasia shortening. The uniform uplift of the plateau, the predominance of strike-slip faulting, the lack of major thrusts and the occurrence of normal faults do not support a model of going-on crustal thickening due to intracontinental convergence. On the contrary, our observations can be better interpreted in terms of lithospheric thinning and mantle upwelling related to gravity escape of Anatolia.  相似文献   
79.
Early Estimation of Seismic Hazard for Strong Earthquakes in Taiwan   总被引:1,自引:0,他引:1  
A shakemap system providing rapid estimates of strong ground shaking could be useful for emergency response providers in a damaging earthquake. A hybrid procedure, which combines site-dependent ground motion prediction models and the limited observations of the Real-Time Digital stream output system (RTD system operated by Central Weather Bureau, CWB), was set up to provide a high-resolution shakemap in a near-real-time manner after damaging earthquakes in Taiwan. One of the main factors that affect the result of ground motion prediction analysis is the existence of site effects. The purpose of this paper is to investigate the local site effects and their influence in the ground shaking and then establish an early estimation procedure of potential hazard for damaging earthquakes. Based on the attenuation law, the site effects of each TSMIP station are discussed in terms of a bias function that is site and intensity-level dependent function. The standard deviation of the site-dependent ground motion prediction model can be significantly reduced. The nonlinear behavior of ground soil is automatically taken into account in the intensity-level dependent bias function. Both the PGA and the spectral acceleration are studied in this study. Based on the RTD data, event correctors are calculated and applied to precisely estimate the shakemap of damaging earthquakes for emergency response.  相似文献   
80.
This work presents a novel neural network‐based approach to detect structural damage. The proposed approach comprises two steps. The first step, system identification, involves using neural system identification networks (NSINs) to identify the undamaged and damaged states of a structural system. The partial derivatives of the outputs with respect to the inputs of the NSIN, which identifies the system in a certain undamaged or damaged state, have a negligible variation with different system errors. This loosely defined unique property enables these partial derivatives to quantitatively indicate system damage from the model parameters. The second step, structural damage detection, involves using the neural damage detection network (NDDN) to detect the location and extent of the structural damage. The input to the NDDN is taken as the aforementioned partial derivatives of NSIN, and the output of the NDDN identifies the damage level for each member in the structure. Moreover, SDOF and MDOF examples are presented to demonstrate the feasibility of using the proposed method for damage detection of linear structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号