首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5364篇
  免费   1343篇
  国内免费   48篇
测绘学   113篇
大气科学   195篇
地球物理   2566篇
地质学   2319篇
海洋学   377篇
天文学   764篇
综合类   11篇
自然地理   410篇
  2022年   6篇
  2021年   63篇
  2020年   80篇
  2019年   220篇
  2018年   254篇
  2017年   336篇
  2016年   405篇
  2015年   395篇
  2014年   425篇
  2013年   559篇
  2012年   372篇
  2011年   388篇
  2010年   369篇
  2009年   300篇
  2008年   323篇
  2007年   243篇
  2006年   205篇
  2005年   237篇
  2004年   186篇
  2003年   184篇
  2002年   162篇
  2001年   145篇
  2000年   125篇
  1999年   65篇
  1998年   38篇
  1997年   26篇
  1996年   34篇
  1995年   33篇
  1994年   35篇
  1993年   17篇
  1992年   32篇
  1991年   33篇
  1990年   30篇
  1989年   22篇
  1988年   19篇
  1987年   25篇
  1986年   26篇
  1985年   27篇
  1984年   35篇
  1983年   30篇
  1982年   26篇
  1981年   28篇
  1980年   20篇
  1979年   16篇
  1978年   19篇
  1977年   19篇
  1976年   18篇
  1975年   16篇
  1974年   20篇
  1973年   14篇
排序方式: 共有6755条查询结果,搜索用时 15 毫秒
991.
We developed a frequency‐domain acoustic‐elastic coupled waveform inversion based on the Gauss‐Newton conjugate gradient method. Despite the use of a high‐performance computer system and a state‐of‐the‐art parallel computation algorithm, it remained computationally prohibitive to calculate the approximate Hessian explicitly for a large‐scale inverse problem. Therefore, we adopted the conjugate gradient least‐squares algorithm, which is frequently used for geophysical inverse problems, to implement the Gauss‐Newton method so that the approximate Hessian is calculated implicitly. Thus, there was no need to store the Hessian matrix. By simultaneously back‐propagating multi‐components consisting of the pressure and displacements, we could efficiently extract information on the subsurface structures. To verify our algorithm, we applied it to synthetic data sets generated from the Marmousi‐2 model and the modified SEG/EAGE salt model. We also extended our algorithm to the ocean‐bottom cable environment and verified it using ocean‐bottom cable data generated from the Marmousi‐2 model. With the assumption of a hard seafloor, we recovered both the P‐wave velocity of complicated subsurface structures as well as the S‐wave velocity. Although the inversion of the S‐wave velocity is not feasible for the high Poisson's ratios used to simulate a soft seafloor, several strategies exist to treat this problem. Our example using multi‐component data showed some promise in mitigating the soft seafloor effect. However, this issue still remains open.  相似文献   
992.
A new formulation is proposed for the electrical potential developed inside a horizontally‐layered half‐space for a direct current point‐source at the surface. The recursion formula for the kernel coefficient in the potential integral is simpler than the generally used two‐coefficient recursion. The numerical difficulties that may occur during the computation of the integrals and near the source axis are examined and solutions are proposed. The set of equations permits a stable and accurate computation of the tabular potential everywhere in the medium.  相似文献   
993.
The Berre Lagoon has been under strong anthropogenic pressure since the early 1950s. The opening of the hydroelectric EDF power plant in 1966 led to large salinity drops. The zooplankton community was mainly composed of two common brackish species: Acartia tonsa and Brachionus plicatilis. Since 2006, European litigation has strongly constrained the input of freshwater, maintaining the salinity above 15. A study was performed between 2008 and 2010 to evaluate how these modifications have impacted the zooplankton community. Our results show that the community is more diverse and contains several coastal marine species (i.e., Centropages typicus, Paracalanus parvus and Acartia clausi). A. tonsa is still present but is less abundant, whereas B. plicatilis has completely disappeared. Strong predatory marine species, such as chaetognaths, the large conspicuous autochtonous jellyfish Aurelia aurita and the invasive ctenophore Mnemiopsis leidyi, are now very common as either seasonal or permanent features of the lagoon.  相似文献   
994.
995.
A nonlinear finite element model for earthquake response analysis of arch dam–water–foundation rock systems is proposed in this paper. The model includes dynamic dam–water and dam–foundation rock interactions, the opening of contraction joints, the radiation damping of semi‐unbounded foundation rock, the compressibility of impounded water, and the upstream energy propagating along the semi‐unbounded reservoir. Meanwhile, a new equivalent force scheme is suggested to achieve free‐field input in the model. The effects of the earthquake input mechanism, joint opening, water compressibility, and radiation damping on the earthquake response of the Ertan arch dam (240 m high) in China are investigated using the proposed model. The results show that these factors significantly affect the earthquake response of the Ertan arch dam. Such factors should therefore be considered in the earthquake response analysis and earthquake safety evaluation of high arch dams. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
996.
This paper presents the preliminary research works on a potential seismic isolation method that makes use of scrap rubber tires for the protection of low‐to‐medium‐rise buildings. The method involves mixing shredded rubber tire particles with soil materials and placing the mixtures around building foundations, which provides a function similar to that of a cushion. Meanwhile, the stockpiling of scrap tires is a significant threat to our environment, and the engineering community has been looking for long‐term viable solutions to the recycling and reuse of rubber. A finite element program has been developed for modeling the time‐domain dynamic responses of soil–foundation–structure system, by which the effectiveness and robustness of the proposed method have been evaluated. In general, the structural responses, in terms of acceleration and inter‐story drift, can be reduced by 40–60%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
997.
This study presents a seismic fragility analysis of low‐rise masonry in‐filled (MI) reinforced concrete (RC) buildings using a proposed coefficient‐based spectral acceleration method. The coefficient‐based method, without requiring any complicated finite element analysis, is a simplified procedure for assessing the spectral acceleration demand (or capacity) of buildings subjected to earthquakes. This paper begins with a calibration of the proposed coefficient‐based method for low‐rise MI RC buildings using published experimental results obtained from shaking table tests. Spectral acceleration‐based fragility curves for low‐rise MI RC buildings under various inter‐story drift limits are then constructed using the calibrated coefficient‐based method. A comparison of the experimental and estimated results indicates that the simplified coefficient‐based method can provide good approximations of the spectral accelerations at peak loads of low‐rise MI RC buildings, if a proper set of drift‐related factors and initial fundamental periods of structures are used. Moreover, the fragility curves constructed using the coefficient‐based method can provide a satisfactory vulnerability evaluation for low‐rise MI RC buildings under a given performance level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
998.
This paper deals with the estimation of peak inelastic displacements of SDOF systems, representative of typical steel structures, under constant relative strength scenarios. Mean inelastic deformation demands on bilinear systems (simulating moment resisting frames) are considered as the basis for comparative purposes. Additional SDOF models representing partially‐restrained and concentrically‐braced (CB) frames are introduced and employed to assess the influence of different force‐displacement relationships on peak inelastic displacement ratios. The studies presented in this paper illustrate that the ratio between the overall yield strength and the strength during pinching intervals is the main factor governing the inelastic deformations of partially‐restrained models and leading to significant differences when compared with predictions based on bilinear structures, especially in the short‐period range. It is also shown that the response of CB systems can differ significantly from other pinching models when subjected to low or moderate levels of seismic demand, highlighting the necessity of employing dedicated models for studying the response of CB structures. Particular attention is also given to the influence of a number of scalar parameters that characterise the frequency content of the ground motion on the estimated peak displacement ratios. The relative merits of using the average spectral period Taver, mean period Tm, predominant period Tg, characteristic period Tc and smoothed spectral predominant period To of the earthquake ground motion, are assessed. This paper demonstrates that the predominant period, defined as the period at which the input energy is maximum throughout the period range, is the most suitable frequency content scalar parameter for reducing the variability in displacement estimations. Finally, noniterative equivalent linearisation expressions based on the secant period and equivalent damping ratios are presented and verified for the prediction of peak deformation demands in steel structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
999.
Concentrated flow is often the dominant source of water erosion following disturbance on rangelands. Because of the lack of studies that explain the hydraulics of concentrated flow on rangelands, cropland‐based equations have typically been used for rangeland hydrology and erosion modeling, leading to less accurate predictions due to different soil and vegetation cover characteristics. This study investigates the hydraulics of concentrated flow using unconfined field experimental data over diverse rangeland landscapes within the Great Basin Region, United States. The results imply that the overall hydraulics of concentrated flow on rangelands differ significantly from those of cropland rills. Concentrated flow hydraulics on rangelands are largely controlled by the amount of cover or bare soil and hillslope angle. New predictive equations for concentrated flow velocity (R2 = 0·47), hydraulic friction (R2 = 0·52), and width (R2 = 0·4) representing a diverse set of rangeland environments were developed. The resulting equations are applicable across a wide span of ecological sites, soils, slopes, and vegetation and ground cover conditions and can be used by physically‐based rangeland hydrology and erosion models to estimate rangeland concentrated flow hydraulic parameters. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   
1000.
The flooding susceptibility of alluvial fans in the Southern Apennines has long been neglected. To partly address this oversight, we focus on the region of Campania which contains highly urbanized piedmont areas particularly vulnerable to flooding. Our findings are based on stratigraphic analysis of the fans and morphometric analysis of the basin‐fan systems. Using geomorphological analysis we recognized active alluvial fans while stratigraphic analysis together with statistical analysis of the morphometric variables was used to classify the fans in terms of the transport process involved. The results indicate that in the geological context examined, the best discrimination between debris flow (Df) and water flood (Wf) processes is achieved by means of two related variables, one for the basin (feeder channel inclination, Cg) and one for the fan (fan length, Fl). The probability that an unclassified fan belongs to group Wf is computed by applying a logistic function in which a P value exceeding 0.5 indicates that a basin/fan system belongs to group Wf. This important result led to the classification of the entire basin/fan system data. As regards process intensity, debris flow‐dominated fans are susceptible to the occurrence of flows with high viscosity and hence subject to more severe events than water flood‐dominated fans. Bearing this in mind, the data gathered in this study allow us to detect where alluvial fan flooding might occur and give information on the different degrees of susceptibility at a regional scale. Regrettably, urban development in recent decades has failed to take the presence of such alluvial fans into account due to the long recurrence time (50–100 years) between floods. This paper outlines the distribution of such susceptibility scenarios throughout the region, thereby constituting an initial step to implementing alluvial fan flooding control and mitigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号