首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7218篇
  免费   384篇
  国内免费   35篇
测绘学   179篇
大气科学   739篇
地球物理   2004篇
地质学   2832篇
海洋学   361篇
天文学   1182篇
综合类   30篇
自然地理   310篇
  2023年   33篇
  2022年   51篇
  2021年   135篇
  2020年   143篇
  2019年   110篇
  2018年   333篇
  2017年   333篇
  2016年   453篇
  2015年   320篇
  2014年   391篇
  2013年   558篇
  2012年   439篇
  2011年   397篇
  2010年   378篇
  2009年   388篇
  2008年   274篇
  2007年   229篇
  2006年   213篇
  2005年   186篇
  2004年   176篇
  2003年   138篇
  2002年   142篇
  2001年   115篇
  2000年   103篇
  1999年   79篇
  1998年   81篇
  1997年   104篇
  1996年   65篇
  1995年   76篇
  1994年   79篇
  1993年   53篇
  1992年   44篇
  1991年   46篇
  1990年   71篇
  1989年   42篇
  1988年   35篇
  1987年   48篇
  1986年   38篇
  1985年   46篇
  1984年   41篇
  1983年   44篇
  1982年   46篇
  1981年   50篇
  1979年   36篇
  1978年   30篇
  1977年   37篇
  1976年   26篇
  1975年   25篇
  1974年   28篇
  1973年   31篇
排序方式: 共有7637条查询结果,搜索用时 21 毫秒
941.
In spring the inland penetration of the West African Monsoon (WAM) is weak and the associated rainband is located over the Guinean coast. Then within a few days deep convection weakens considerably and the rainband reappears about 20?days after over the Sahel, where it remains until late September signalling the summer rainy season. Over the period 1989–2008 a teleconnection induced by the Indian monsoon onset is shown to have a significant impact on the WAM onset, by performing composite analyses on both observational data sets and atmospheric general circulation model simulations ensembles where the model is nudged to observations over the Indian monsoon sector. The initiation of convective activity over the Indian subcontinent north of 15°N at the time of the Indian monsoon onset results in a westward propagating Rossby wave establishing over North Africa 7–15?days after. A back-trajectory analysis shows that during this period, dry air originating from the westerly subtropical jet entrance is driven to subside and move southward over West Africa inhibiting convection there. At the same time the low-level pressure field over West Africa reinforces the moisture transport inland. After the passage of the wave, the dry air intrusions weaken drastically. Hence 20?days after the Indian monsoon onset, convection is released over the Sahel where thermodynamic conditions are more favourable. This scenario is very similar in the observations and in the nudged simulations, meaning that the Indian monsoon onset is instrumental in the WAM onset and its predictability at intraseasonal scale.  相似文献   
942.
The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Ni?o-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24?h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM–ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2?h SST coupling is implemented in the CGCM, the ISM–ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Ni?o event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model’s El Ni?o which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM–ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum is in better agreement with observations. On the other hand, the ISM–IOD teleconnection is sensitive to both SST coupling frequency and the vertical oceanic resolution, but increasing the vertical oceanic resolution is degrading the ISM–IOD teleconnection in the CGCM. These results highlight the need of a proper assessment of both temporal scale interactions and coupling strategies in order to improve current CGCMs. These results, which must be confirmed with other CGCMs, have also important implications for dynamical seasonal prediction systems or climate change projections of the monsoon.  相似文献   
943.
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.  相似文献   
944.
Performance of a multi-RCM ensemble for South Eastern South America   总被引:1,自引:1,他引:0  
The ability of four regional climate models to reproduce the present-day South American climate is examined with emphasis on La Plata Basin. Models were integrated for the period 1991–2000 with initial and lateral boundary conditions from ERA-40 Reanalysis. The ensemble sea level pressure, maximum and minimum temperatures and precipitation are evaluated in terms of seasonal means and extreme indices based on a percentile approach. Dispersion among the individual models and uncertainties when comparing the ensemble mean with different climatologies are also discussed. The ensemble mean is warmer than the observations in South Eastern South America (SESA), especially for minimum winter temperatures with errors increasing in magnitude towards the tails of the distributions. The ensemble mean reproduces the broad spatial pattern of precipitation, but overestimates the convective precipitation in the tropics and the orographic precipitation along the Andes and over the Brazilian Highlands, and underestimates the precipitation near the monsoon core region. The models overestimate the number of wet days and underestimate the daily intensity of rainfall for both seasons suggesting a premature triggering of convection. The skill of models to simulate the intensity of convective precipitation in summer in SESA and the variability associated with heavy precipitation events (the upper quartile daily precipitation) is far from satisfactory. Owing to the sparseness of the observing network, ensemble and observations uncertainties in seasonal means are comparable for some regions and seasons.  相似文献   
945.
The variability and predictability of the surface wind field at the regional scale is explored over a complex terrain region in the northeastern Iberian Peninsula by means of a downscaling technique based on Canonical Correlation Analysis. More than a decade of observations (1992–2005) allows for calibrating and validating a statistical method that elicits the main associations between the large scale atmospheric circulation over the North Atlantic and Mediterranean areas and the regional wind field. In an initial step the downscaling model is designed by selecting parameter values from practise. To a large extent, the variability of the wind at monthly timescales is found to be governed by the large scale circulation modulated by the particular orographic features of the area. The sensitivity of the downscaling methodology to the selection of the model parameter values is explored, in a second step, by performing a systematic sampling of the parameters space, avoiding a heuristic selection. This provides a metric for the uncertainty associated with the various possible model configurations. The uncertainties associated with the model configuration are considerably dependent on the spatial variability of the wind. While the sampling of the parameters space in the model set up moderately impact estimations during the calibration period, the regional wind variability is very sensitive to the parameters selection at longer timescales. This fact illustrates that downscaling exercises based on a single configuration of parameters should be interpreted with extreme caution. The downscaling model is used to extend the estimations several centuries to the past using long datasets of sea level pressure, thereby illustrating the large temporal variability of the regional wind field from interannual to multicentennial timescales. The analysis does not evidence long term trends throughout the twentieth century, however anomalous episodes of high/low wind speeds are identified.  相似文献   
946.
Although GNSS techniques are theoretically sensitive to the Earth center of mass, it is often preferable to remove intrinsic origin and scale information from the estimated station positions since they are known to be affected by systematic errors. This is usually done by estimating the parameters of a linearized similarity transformation which relates the quasi-instantaneous frames to a long-term frame such as the International Terrestrial Reference Frame (ITRF). It is well known that non-linear station motions can partially alias into these parameters. We discuss in this paper some procedures that may allow reducing these aliasing effects in the case of the GPS techniques. The options include the use of well-distributed sub-networks for the frame transformation estimation, the use of site loading corrections, a modification of the stochastic model by downweighting heights, or the joint estimation of the low degrees of the deformation field. We confirm that the standard approach consisting of estimating the transformation over the whole network is particularly harmful for the loading signals if the network is not well distributed. Downweighting the height component, using a uniform sub-network, or estimating the deformation field perform similarly in drastically reducing the amplitude of the aliasing effect. The application of these methods to reprocessed GPS terrestrial frames permits an assessment of the level of agreement between GPS and our loading model, which is found to be about 1.5 mm WRMS in height and 0.8 mm WRMS in the horizontal at the annual frequency. Aliased loading signals are not the main source of discrepancies between loading displacement models and GPS position time series.  相似文献   
947.
This dendroclimatological research is based on two close pine forests (Pinus sylvestris and Pinus uncinata) located at the Northern Iberian System (Spain), and three tree-ring variables (ring widths, δ 13C and δ 18O). The climate-tree growth system was assessed at local and regional scales using three climate datasets. Calibration of tree-ring records with climate showed a diversity of information recorded in the different variables, such as a general response to temperature and precipitation of current growing period, and an important contribution of previous year conditions understood as the use of food reserves. The analysis of the stability of climate-tree growth relationships throughout the twentieth century showed a shift of those climatic variables to which trees responded and results suggested an enhancement of reserve use on current tree growth. The results obtained in this research made clear a physiological adaptation of trees to changing climate. The results provided hints that the recent warming coupled to slight precipitation decay are forcing growth of studied trees to a higher stress status and to a higher climate-growth synchronisation. These instabilities also have implications on future dendroclimatic reconstructions performed with trees growing under changing environments.  相似文献   
948.
949.
A novel downscaling approach of the ERA40 (ECMWF 40-years reanalysis) data set has been taken and results for comparison with observations in Norway are shown. The method applies a nudging technique in a stretched global model, focused in the Norwegian Sea (67°N, 5°W). The effective resolution is three times the one of the ERA40, equivalent to about 30 km grid spacing in the area of focus. Longer waves (<T42) in the downscaled solution are nudged towards the ERA40 solution, and thus the large-scale circulation is similar in the two data sets. The shorter waves are free to evolve, and produce high intensities of winds and precipitation. The comparison to observations incorporate numerous station data points of (1) precipitation (#357), (2) temperature (#98) and (3) wind (#10), and for the period 1961–1990, the downscaled data set shows large improvements over ERA40. The daily precipitation shows considerable reduction in bias (from 50 to 11%), and twofold reduction at the 99.9 percentile (from −59 to −29%). The daily temperature showed a bias reduction of about a degree in most areas, and relative large RMSE reduction (from 7.5 to 5.0°C except winter). The wind comparison showed a slight improvement in bias, and significant improvements in RMSE.  相似文献   
950.
Climate models suggest that anthropogenic emissions are likely to induce an important drying during summer over most of Europe in the late 21st century. However, the amplitude of the associated decrease in precipitation strongly varies among the different climate models. In order to reduce this spread, it is first necessary to identify its causes and the associated physical mechanisms. Consequently, the focus of this paper is to better estimate the role of large scale circulation (LSC) in precipitation changes over Europe using a multi-model framework and then to characterize the LSC changes using the weather regime paradigm. We show that LSC changes directly lead to a decrease of precipitation over northwestern Europe. This circulation-driven decrease in rainfall is mainly linked to an increase (decrease) of the occurrence of positive (negative) phase of the North Atlantic Oscillation regime. LSC is also responsible for a significant part of the models spread in precipitation changes over these regions. Over southern Europe, the role of LSC changes on multi-model mean precipitation changes is generally weak. We also show that the precipitation anomalies directly induced by LSC modifications seem to be further amplified through local feedbacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号