首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
大气科学   5篇
地球物理   14篇
地质学   20篇
海洋学   2篇
天文学   31篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有72条查询结果,搜索用时 29 毫秒
61.
Abstract Temporal–spatial variations in Late Cenozoic volcanic activity in the Chugoku area, southwest Japan, have been examined based on 108 newly obtained K–Ar ages. Lava samples were collected from eight Quaternary volcanic provinces (Daisen, Hiruzen, Yokota, Daikonjima, Sambe, Ooe–Takayama, Abu and Oki) and a Tertiary volcanic cluster (Kibi Province) to cover almost all geological units in the province. Including published age data, a total of 442 Cenozoic radiometric ages are now available. Across‐arc volcanic activity in an area approximately 500 km long and 150 km wide can be examined over 26 million years. The period corresponds to syn‐ and post‐back‐arc basin opening stages of the island arc. Volcanic activity began in the central part of the rear‐arc ca 26 Ma. This was followed by arc‐wide expansion at 20 Ma by eruption at two rear‐arc centers located at the eastern and western ends. Expansion to the fore‐arc occurred between 20 and 12 Ma. This Tertiary volcanic arc was maintained until 4 Ma with predominant alkali basalt centers. The foremost‐arc zone activity ceased at 4 Ma, followed by quiescence over the whole arc between 4 and 3 Ma. Volcanic activity resumed at 3 Ma, covering the entire rear‐arc area, and continued until the present to form a Quaternary volcanic arc. Adakitic dacite first occurred at 1.7 Ma in the middle of the arc, and spread out in the center part of the Quaternary volcanic arc. Alkali basalt activities ceased in the area where adakite volcanism occurred. Fore‐arc expansion of the volcanic arc could be related to the upwelling and expansion of the asthenosphere, which caused opening of the Japan Sea. Narrowing of the volcanic zone could have been caused by progressive Philippine Sea Plate subduction. Deeper penetration could have caused melting of the slab and resulted in adakites. Volcanic history in the Late Cenozoic was probably controlled by the history of evolution of the upper mantle structure, coinciding with back‐arc basin opening and subsequent reinitiation of subduction.  相似文献   
62.
The activity of a meteor shower is thought to be proportional to the activities through time of the parent comet. Recent applications of the dust trail theory provide us not only with a new method to forecast the occurrences and intensities of shower activities, but it is also offers a new approach to explore the history of past activities of the parent comet by retro-tracking its associated meteor showers. We introduce the result of an effort for relating meteor shower activities to the parent comet activities for which we chose the October Draconids and comet 21P/Giacobini-Zinner in this paper.  相似文献   
63.
Yoga A.  Sendjaja  Jun-Ichi  Kimura  Edy  Sunardi 《Island Arc》2009,18(1):201-224
The Sunda Arc of Indonesia developed along the convergent margin between the Eurasian and the Australian Plates. More than 100 Quaternary volcanic centers occur along the arc. The West Java Arc is a segment of the Sunda Arc in which more than 10 volcanic centers are located, corresponding to the 120 to 200 km depth contours of the Wadati–Benioff zone. The geochemistry of 207 Quaternary lavas from six centers across the arc was investigated. The lavas range from basalt to dacite. Incompatible element abundances increase from the volcanic front to the rear‐arc in response to a change from low‐K to high‐K suites. Nd–Sr isotope compositions of the basalts scatter between mid‐ocean ridge basalt (MORB) source mantle and Indian Ocean sediment (SED) compositions, with volcanic front low‐K basalts having more radiogenic Nd than the rear‐arc basalts. It is suggested that mixing between slab‐derived fluids mainly from the SED and melt from MORB source mantle played a significant role in determining the geochemistry of the West Java basalts. Incompatible element patterns in primitive mantle normalized multi‐element plots are almost identical across the arc, except for greater inclination and weaker positive Sr spikes in the rear‐arc basalts. This suggests a lower degree of partial melting in the rear‐arc mantle, accompanied by change in SED fluid composition between the volcanic front and the rear‐arc. The latter is confirmed by fluid‐fluxed melting model calculations using multiple trace elements and Nd and Sr isotopes. All the West Java Arc lavas require deficit of Sr from the slab SED. This may occur due to selective breakdown of Sr‐rich hydrous silicate minerals, such as zoisite, at shallower depths before the SED component reaches the depth of dehydration effective for magma genesis. The rear‐arc basalts need further Sr deficits along with lesser fluid. These features are commonly observed in many arc basalts, and are likely attributable to the same mechanism.  相似文献   
64.
An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al2O3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.  相似文献   
65.
The coronal explosions, discovered by De Jager and Boelee (1984), and interpreted by them as manifestations of plasma streaming out of the flare kernels, can also be interpreted as signatures of current loop coalescence in the flaring region.  相似文献   
66.
We consider two force-free current loops, as proposed by Gold and Hoyle (1960), as the initial current loops, to investigate two types of the magnetic reconnection process, the partial and complete reconnections during coalescence of these loops, by using a 3-D resistive MHD code. It is shown that two plasmoids can be produced on both sides of the coalescence area by both types of the magnetic reconnection process during coalescence of two current loops. It is also shown that strong fast magnetosonic waves can be induced in the partial reconnection case of two-current-loop collision. When two current loops collide locally at two points, four plasmoids can be produced and two of these plasmoids merge into one.  相似文献   
67.
We present results for the generation process of a shell current loop by using a three-dimensional ideal MHD code. It is shown that a shell current loop with a diffuse closure current can be generated due to the twisting motions of the loop footpoints. It is also shown that during the generation of a shell current loop, plasma density enhancement propagates along a shell current loop. It is suggested that the generation process of a shell current loop may be related to the movement of soft X-ray enhancement from the footpoints along a loop before onset of a solar flare.  相似文献   
68.
Observations of persistent meteor trains are limited because of the extreme rarity of the phenomenon. The altitudinal distribution of persistent trains has previously been investigated via limited instances of simultaneous observation from multiple sites, however, a statistical study of persistent trains has yet to be realized. The meteor train observation (METRO) campaign was established in Japan in 1998 to obtain images of persistent trains. From 1998 to 2002, the METRO campaign, involving Japanese amateur collaborators, captured more than 400 image sequences of persistent trains, resulting in 53 simultaneous multi-site observations. Several Japanese observers were involved in imaging persistent trains prior to the METRO campaign, producing 6 simultaneous observations over the period 1988–1997. In this paper, simultaneous multi-site observations of high spatial and temporal resolution are used to determine, via triangulation, the altitudinal distribution of persistent trains for 20 events. The altitudinal range of 2 Orionid trains was slightly higher than that of 18 Leonid trains. The Leonid train data reveal no clear dependence of upper and lower altitude on the brightness of the associated fireball. The upper altitude of the 18 observed Leonid trains were almost invariant with respect to local time (LT) of observation, however, a possible dependence of lower altitude on LT of observation was also found, indicating a near-constant penetrating path-length in the upper atmosphere for each train. The average upper altitude of persistent Leonid trains was 99.8 km, while the average central altitude was 93.0 km. These trends are probably determined by atmospheric conditions such as the abundance of O and O3.  相似文献   
69.
We present a numerical simulation of the fast magnetosonic shock wave formation during a two-current-loop collision by using a magnetohydrodynamical model. It is shown that the rarefaction waves are generated in the initial stage when the two current loops start to collide. After the rarefaction waves propagate away from the excited region, the fast magnetosonic waves with density enhancement can be produced for the simulation when the current strength of the loop is weak. As the current becomes strong enough, the magnetosonic shock waves can be generated in the direction perpendicular to that of the two-loop collision.  相似文献   
70.
Zilong  Li  Yoshiaki  Tainosho  Jun-Ichi  Kimura  Kazuyuki  Shiraishi 《Island Arc》2005,14(4):636-652
Abstract The Mefjell plutonic complex consists of 500–550‐Ma Pan‐African plutonic rocks, which intrude into the Precambrian crystalline basement in the Sør Rondane Mountains, East Antarctica, and forms part of the Sør Rondane Suture Zone. The complex comprises syenitic and granitic (mostly monzogranitic) rocks, and is characterized by the presence of iron‐rich hydrous mafic minerals and primary ilmenite, both of which imply its formation at high temperature and under low oxygen fugacity conditions. The syenitic rocks are metaluminous, and are high in alkalis, K2O/Na2O, Al2O3, FeOt/(FeOt + MgO) (0.88–0.98), K/Rb (800–1000), Ga (18–28 p.p.m.), Zr (up to 2100 p.p.m.) and Ba. They also have a low Mg? (Mg/[Mg + Fe2+]), Rb, Sr, Nb, Y and F, low to moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios and positive Eu anomalies in their rare earth element (REE) patterns. The granitic rocks are metaluminous to peraluminous, and have a high Rb content, high Sr/Ba and LREE/HREE ratios, low K/Rb and negative Eu anomalies. Most of the syenitic and granitic rocks have Y/Nb ratios greater than 1.2, and are depleted in Nb, Ti and Sr on the primitive mantle‐normalized spider diagrams, indicating a crustal origin with subduction zone signatures. We interpret both the syenitic and granitic rocks to be derived from an iron‐rich lower crustal source by dehydration melting induced by the heat of mantle‐derived basaltic intrusion, after which they then underwent limited fractional crystallization. The Mefjell plutonic complex has a high Zr content and tectonic discrimination diagram signatures indicative of normal A‐type granitic rocks. Both rock suites may have been generated under the same postorogenic tectonic setting. The Mefjell syenitic rocks are chemically comparable to charnockites in the Gjelsvikjella and western Mühlig‐Hofmannfjella areas of East Antarctica, whereas the granitic rocks are comparable to aluminous A‐type granitic rocks in South India, which were emplaced during formation and evolution of the Gondwanaland supercontinent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号