首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33093篇
  免费   535篇
  国内免费   375篇
测绘学   1254篇
大气科学   2565篇
地球物理   6397篇
地质学   11671篇
海洋学   2595篇
天文学   7852篇
综合类   143篇
自然地理   1526篇
  2021年   280篇
  2020年   285篇
  2019年   346篇
  2018年   846篇
  2017年   796篇
  2016年   1041篇
  2015年   610篇
  2014年   996篇
  2013年   1767篇
  2012年   1070篇
  2011年   1329篇
  2010年   1107篇
  2009年   1427篇
  2008年   1250篇
  2007年   1201篇
  2006年   1214篇
  2005年   1021篇
  2004年   927篇
  2003年   903篇
  2002年   884篇
  2001年   792篇
  2000年   766篇
  1999年   692篇
  1998年   630篇
  1997年   641篇
  1996年   577篇
  1995年   546篇
  1994年   520篇
  1993年   437篇
  1992年   397篇
  1991年   421篇
  1990年   420篇
  1989年   397篇
  1988年   375篇
  1987年   446篇
  1986年   378篇
  1985年   471篇
  1984年   501篇
  1983年   485篇
  1982年   462篇
  1981年   379篇
  1980年   381篇
  1979年   336篇
  1978年   330篇
  1977年   316篇
  1976年   254篇
  1975年   256篇
  1974年   280篇
  1973年   321篇
  1972年   208篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Mafic high-pressure granulite, eclogite and pyroxenite xenoliths have been collected from a Mesozoic volcaniclastic diatreme in Xinyang, near south margin of the Sino-Korean Craton (SKC). The high-pressure granulite xenoliths are mainly composed of fine-grained granoblasts of Grt+Cpx+Pl+Hbl±Kfs±Q±Ilm with relict porphyritic mineral assemblage of Grt+Cpx±Pl±Rt. PT estimation indicates that the granoblastic assemblage crystallized at 765–890 °C and 1.25–1.59 GPa, corresponding to crustal depths of ca. 41–52 km with a geotherm of 75–80 mW/m2. Calculated seismic velocities (Vp) of high-pressure granulites range from 7.04 to 7.56 km/s and densities (D) from 3.05 to 3.30 g/cm3. These high-pressure granulite xenoliths have different petrographic and geochemical features from the Archean mafic granulites. Elevated geotherm and petrographic evidence imply that the lithosphere of this craton was thermally disturbed in the Mesozoic prior to eruption of the host diatreme. These samples have sub-alkaline basaltic compositions, equivalent to olivine– and quartz–tholeiite. REE patterns are flat to variably LREE-enriched (LaN/YbN=0.98–9.47) without Eu anomaly (Eu/Eu*=0.95–1.11). They possess 48–127 ppm Ni and 2–20 ppm Nb with Nb/U and La/Nb ratios of 13–54 and 0.93–4.75, respectively, suggesting that these high-pressure granulites may be products of mantle-derived magma underplated and contaminated at the base of the lower crust. This study also implies that up to 10 km Mesozoic lowermost crust was delaminated prior to eruption of the Cenozoic basalts on the craton.  相似文献   
992.
We analyze the strong motion accelerograms recorded for the large (MS=7.7, MW=7.3, mb=6.4) Rudbar earthquake of June 20, 1990. The earthquake had a complex source process. We have identified the imprints of rupture of three localized asperities on the major causative fault on the accelerograms. These asperities are interpreted to correspond to (i) the main shock that initiated the rupture process and was located in the domino block between the Kabateh and Zard Goli faults, (ii) a foreshock that occurred about 10 s earlier in the Kabateh fault and (iii) a later shock, on the western end of the Baklor fault, which terminated the bilateral rupture process at the western end. We estimate the strike, dip and slip of these causative sub-event rupture planes using the SH spectral amplitudes, based on a point source representation of sub-events and a non-linear least square formulation for inversion of the amplitude data. The results of our inversion of the near field data are comparable to other studies based on teleseismic data.  相似文献   
993.
In the metamorphic cores of many orogenic belts, large macroscopic folds in compositional layering also appear to fold one or more pervasive matrix foliations. The latter geometry suggests the folds formed relatively late in the tectonic history, after foliation development. However, microstructural analysis of four examples of such folds suggests this is not the case. The folds formed relatively early in the orogenic history and are the end product of multiple, near orthogonal, overprinting bulk shortening events. Once large macroscopic folds initiate, they may tighten further during successive periods of sub-parallel shortening, folding or reactivation of foliations that develop during intervening periods of near orthogonal shortening. Reactivation of the compositional layering defining the fold limbs causes foliation to be rotated into parallelism with the limbs.Multiple periods of porphyroblast growth accompanied the multiple phases of deformation that postdated the initial development of these folds. Some of these phases of deformation were attended by the development of large numbers of same asymmetry spiral-shaped inclusion trails in porphyroblasts on one limb of the fold and not the other, or larger numbers of opposite asymmetry spirals on the other limb, or similar numbers of the same asymmetry spirals on both limbs. Significantly, the largest disparity in numbers from limb to limb occurred for the first of these cases. For all four regional folds examined, the structural relationships that accompanied these large disparities were identical. In each case the shear sense operating on steeply dipping foliations was opposite to that required to originally develop the fold. Reactivation of the folded compositional layering was not possible for this shear sense. This favoured the development of sites of approximately coaxial shortening early during the deformation history, enhancing microfracture and promoting the growth of porphyroblasts on this limb in comparision to the other. These distributions of inclusion trail geometries from limb to limb cannot be explained by porphyroblast rotation, or folding of pre-existing rotated porphyroblasts within a shear zone, but can be explained by development of the inclusion trails synchronous with successive sub-vertical and sub-horizontal foliations.  相似文献   
994.
With the aim of obtaining Tertiary palaeomagnetic directions for the Adriatic Foreland of the Dinaric nappe system, we carried out a palaeomagnetic study on platform carbonates from stable Istria, from the northwestern and the Central Dalmatia segment of imbricated Adria. Despite the weak to very weak natural remanences of these rocks, we obtained tectonically useful palaeomagnetic directions for 25 sites from 20 localities. All exhibit westerly declinations, both before and after tilt correction. Concerning the age of the magnetizations, we conclude that five subhorizontal and magnetite bearing Eocene localities from stable Istria are likely to carry primary remanence, whereas three tilted and hematite-bearing ones were remagnetized. In the northwestern segment of imbricated Adria the cluster of the mean directions improved after tectonic correction indicating pre-tilting magnetization. In contrast, Maastrichtian–Eocene platform carbonates from Central Dalmatian were remagnetized in connection with the late Eocene–Oligocene deformation or Miocene hydrocarbon migration. Based on the appropriate site/locality means, we calculate mean palaeomagnetic directions for the above three areas and suggest an alternative interpretation of the data of Kissel et al. [J. Geophys. Res. 100 (1995) 14999] for the flysch of Central Dalmatia. The four area mean direction define a regional palaeomagnetic direction of Dec=336°, Inc=+52°, k=107, α95=9°. From these data we conclude that stable Istria, in close coordination with imbricated Adria, must have rotated by 30° counterclockwise in the Tertiary, relative to Africa and stable Europe. We suggest that the latest Miocene–early Pliocene counterclockwise rotations observed in northwestern Croatia and northeastern Slovenia were driven by that of the Adriatic Foreland, i.e. the rotation of the latter took place between 6 and 4 Ma.  相似文献   
995.
Heterogeneous shallow Plio-Quaternary formations of the Souss Plain represent the most important aquifer in southern High Atlas Mountains in Morocco. The present work was conducted in the Souss Upstream Basin to identify the chemical characteristics and the origin of groundwater in an aquifer under semi-arid climate. Isotopic and hydrochemical compositions combined with geological and hydrogeological data were used for this purpose. The total dissolved solids vary from 239 to 997 mg l−1, and the following groundwater types are recognized: Ca2+–Mg2+–HCO3, Ca2+–Mg2+–SO42− and Ca2+–Mg2+–Cl. The groundwater is saturated and slightly supersaturated with respect to carbonate minerals and undersaturated with respect to evaporite minerals, which means that the groundwater composition is largely controlled by the dissolution of carbonate rocks known in the basin. The isotopic contents of groundwaters ranged from −8‰ to −5.2‰ for δ18O, from −52‰ to −34‰ for δD, and from 0 to 5.5 TU for tritium. The hydrogen (δD) and oxygen (δ18O) isotope signatures reveal a significant infiltration before evaporation takes place, indicating a major recharge directly from fractures in the crystalline and limestone formations of Atlas Mountains (above 800 m a.s.l.) and infiltration of surface water in the alluvial cones at the border of the Atlas basins. The very low tritium values suggest that the groundwater recharge follows a long flow path and a mixing between old and modern water is shown. However, a slight evaporation effect is noted in the southern part of the basin close to the Anti-Atlas Mountains.  相似文献   
996.
997.
The Rajmahal Traps were discovered in the Panagarh area, West Bengal, during the exploration for coal resources. A Gondwana succession was found beneath the traps, consisting of the Early Cretaceous Intratrappean Rajmahal Formation, the Early Triassic Panchet Formation and the Late Permian coal-bearing Raniganj Formation. The present palynological study was aimed at confirming the age of the Panchet Formation. As a result of this study it has been found that Jurassic sediments are also included in the Panchet Formation. The study has revealed that the Panchet Formation, defined on a lithological basis, is a time-transgressive unit extending from the Early Triassic to the Late Jurassic, with a phase of non-deposition between the Middle Triassic and Middle Jurassic.  相似文献   
998.
A single locality of the Late Cretaceous (Maastrichtian) Lameta Formation at Pisdura in Central India has yielded a large number of coprolites attributed to titanosaurian dinosaurs. Internally the coprolites are dark grey and contain abundant plant tissues and other organic materials. The plant tissues are mostly of gymnospermous origin. In addition, remains of bacterial colonies, fungal spores and algae are seen in the macerated fraction under scanning electron microscope. The dark grey appearance is probably attributable to fine-grained organic matter within voids in tracheids or xylem. The average 13C/12C ratio of the organic matter in the coprolites is -24‰ (relative to PDB) suggesting that plants of C3type were the main diet of their producers. A comparison of δ15N value (about 4‰ w.r.t. air) of the coprolites with that of faecal matter of modern herbivores and carnivores suggests that gut fermentation may not have been an active mechanism in the digestion process of titanosaurs.  相似文献   
999.
Variations in both width and density of annual rings from a network of tree chronologies were used to develop high-resolution proxies to extend the climate record in the Wrangell Mountain region of Alaska. We developed a warm-season (July–September) temperature reconstruction that spans A.D. 1593–1992 based on the first eigenvector from principal component analysis of six maximum latewood density (MXD) chronologies. The climate/tree-growth model accounts for 51% of the temperature variance from 1958 to 1992 and shows cold in the late 1600s–early 1700s followed by a warmer period, cooling in the late 1700s–early 1800s, and warming in the 20th century. The 20th century is the warmest of the past four centuries. Several severely cold warm-seasons coincide with major volcanic eruptions. The first eigenvector from a ring-width (RW) network, based on nine chronologies from the Wrangell Mountain region (A.D. 1550–1970), is correlated positively with both reconstructed and recorded Northern Hemisphere temperatures. RW shows a temporal history similar to that of MXD by increased growth (warmer) and decreased growth (cooler) intervals and trends. After around 1970 the RW series show a decrease in growth, while station data show continued warming, which may be related to increasing moisture stress or other factors. Both the temperature history based on MXD and the growth trends from the RW series are consistent with well-dated glacier fluctuations in the Wrangell Mountains and some of the temperature variations also correspond to variations in solar activity.  相似文献   
1000.
Combined U-Pb zircon and 40Ar/39Ar sanidine data from volcanic rocks within or adjacent to the Geysers geothermal reservoir constrain the timing of episodic eruption events and the pre-eruptive magma history. Zircon U-Pb concordia intercept model ages (corrected for initial 230Th disequilibrium) decrease as predicted from stratigraphic and regional geological relationships (1σ analytical error): 2.47 ± 0.04 Ma (rhyolite of Pine Mountain), 1.38 ± 0.01 Ma (rhyolite of Alder Creek), 1.33 ± 0.04 Ma (rhyodacite of Cobb Mountain), 1.27 ± 0.03 Ma (dacite of Cobb Valley), and 0.94 ± 0.01 Ma (dacite of Tyler Valley). A significant (∼0.2-0.3 Ma) difference between these ages and sanidine 40Ar/39Ar ages measured for the same samples demonstrates that zircon crystallized well before eruption. Zircons U-Pb ages from the underlying main-phase Geysers Plutonic Complex (GPC) are indistinguishable from those of the Cobb Mountain volcanics. While this is in line with compositional evidence that the GPC fed the Cobb Mountain eruptions, the volcanic units conspicuously lack older (∼1.8 Ma) zircons from the shallowest part of the GPC. Discontinuous zircon age populations and compositional relationships in the volcanic and plutonic samples are incompatible with zircon residing in a single long-lived upper crustal magma chamber. Instead we favor a model in which zircons were recycled by remelting of just-solidified rocks during episodic injection of more mafic magmas. This is consistent with thermochronologic evidence that the GPC cooled below 350° C at the time the Cobb Mountain volcanics were erupted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号