首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   8篇
地质学   32篇
海洋学   11篇
天文学   3篇
自然地理   2篇
  2023年   1篇
  2018年   5篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   7篇
  2008年   5篇
  2007年   1篇
  2005年   1篇
  2004年   4篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1978年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
11.
Computation of solitary waves during propagation and runup on a slope   总被引:1,自引:0,他引:1  
A numerical time-simulation algorithm for analysing highly nonlinear solitary waves interacting with plane gentle and steep slopes is described by employing a mixed Eulerian–Lagrangian method. The full nonlinear free surface conditions are considered here in a Lagrangian frame of reference without any analytical approximations, and thus the method is valid for very steep waves including overturning. It is found that the runup height is crucially dependent on the wave steepness and the slope of the plane. Pressures and forces exerted on impermeable walls of different inclinations (slopes) by progressive shallow water solitary waves are studied. Strong nonlinear features in the form of pronounced double peaks are visible in the time history of pressure and force signals with increasing heights of the oncoming solitary waves. The effect of nonlinearity is less pronounced as the inclination of the wall decreases with respect to the bottom surface.  相似文献   
12.
王坚  寇大兵 《内陆地震》1999,13(1):50-57
1998年5月29日皮山县发生6.2级地震,震中距皮山县城约39km,震源深度为32km,烈度分布区为北西-南东走向的椭圆形,极震区烈度为Ⅶ度,个别点为Ⅷ度,地震使皮山县县城,9个乡,2个镇,2个农场,墨玉县部分地区遭到不同程度的损失。共计受伤人数为26人,其中重伤为2人,无家可归者人数为5566人,1392户,牲畜死亡4454头。地震造成的直接经济损失达5486.75万元。  相似文献   
13.
The Newania carbonatite complex of India is one of the few dolomite-dominated carbonatites of the world. Intruding into Archean basement gneisses, the rocks of the complex have undergone limited diversification and are not associated with any alkaline silicate rock. Although the magmatic nature of the complex was generally accepted, its age of emplacement had remained equivocal because of the disturbed nature of radioisotope systems. Many questions about the nature of its mantle source and mode of origin had remained unanswered because of lack of geochemical and isotopic data. Here, we present results of our effort to date the complex using 147Sm–143Nd, 207Pb–206Pb and 40Ar–39Ar dating techniques. We also present mineral chemistry, major and trace element geochemistry and Sr–Nd isotopic ratio data for these carbonatites. Our age data reveal that the complex was emplaced at ~1,473 Ma and parts of it were affected by a thermal event at ~904 Ma. The older 207Pb–206Pb ages reported here (~2.4 Ga) and by one earlier study (~2.3 Ga; Schleicher et al. Chem Geol 140:261–273, 1997) are deemed to be a result of heterogeneous incorporation of crustal Pb during the post-emplacement thermal event. The thermal event had little effect on many magmatic signatures of these rocks, such as its dolomite–magnesite–ankerite–Cr-rich magnetite–magnesio-arfvedsonite–pyrochlore assemblage, mantle like δ13C and δ18O and typical carbonatitic trace element patterns. Newania carbonatites show fractional crystallization trend from high-Mg to high-Fe through high-Ca compositions. The least fractionated dolomite carbonatites of the complex possess very high Mg# (≥80) and have similar major element oxide contents as that of primary carbonatite melts experimentally produced from peridotitic sources. In addition, lower rare earth element (and higher Sr) contents than a typical calcio-carbonatite and mantle like Nb/Ta ratios indicate that the primary magma for the complex was a magnesio-carbonatite melt and that it was derived from a carbonate bearing mantle. The Sr–Nd isotopic data suggest that the primary magma originated from a metasomatized lithospheric mantle. Trace element modelling confirms such an inference and suggests that the source was a phlogopite bearing mantle, located within the garnet stability zone.  相似文献   
14.
Determination of the peak thermal condition is vital in order to understand tectono-thermal evolution of the Himalayan belt. The Lesser Himalayan Sequence (LHS) in the Western Arunachal Pradesh, being rich in carbonaceous material (CM), facilitates the determination of peak metamorphic temperature based on Raman spectroscopy of carbonaceous material (RSCM). In this study, we have used RSCM method of Beyssac et al. (J Metamorph Geol 20:859–871, 2002a) and Rahl et al. (Earth Planet Sci Lett 240:339–354, 2005) to estimate the thermal history of LHS and Siwalik foreland from the western Arunachal Pradesh. The study indicates that the temperature of 700–800 °C in the Greater Himalayan Sequence (GHS) decreases to 650–700 °C in the main central thrust zone (MCTZ) and decreases further to <200 °C in the Mio-Pliocene sequence of Siwaliks. The work demonstrates greater reliability of Rahl et al.’s (Earth Planet Sci Lett 240:339–354, 2005) RSCM method for temperatures >600 and <340 °C. We show that the higher and lower zones of Bomdila Gneiss (BG) experienced temperature of ~600 °C and exhumed at different stages along the Bomdila Thrust (BT) and Upper Main Boundary Thrust (U.MBT). Pyrolysis analysis of the CM together with the Fission Track ages from upper Siwaliks corroborates the RSCM thermometry estimate of ~240 °C. The results indicate that the Permian sequence north of Lower MBT was deposited at greater depths (>12 km) than the upper Siwalik sediments to its south at depths <8 km before they were exhumed. The 40Ar/39Ar ages suggest that the upper zones of Se La evolved ~13–15 Ma. The middle zone exhumed at ~11 Ma and lower zone close to ~8 Ma indicating erosional unroofing of the MCT sheet. The footwall of MCTZ cooled between 6 and 8 Ma. Analyses of PT path imply that LHS between MCT and U.MBT zone falls within the kyanite stability field with near isobaric condition. At higher structural level, the temperatures increase gradually with PT conditions in the sillimanite stability field. The near isothermal (700–800 °C) condition in the GHS, isobaric condition in the MCTZ together with Tt path evidence of GHS that experienced relatively longer duration of near peak temperatures and rapid cooling towards MCTZ, compares the evolution of GHS and inverted metamorphic gradient closely to channel flow predictions.  相似文献   
15.
~(40)Ar-~(39)Ar GEOCHRONOLGY OF THE OPHIOLITE OF INDUS SUTURE ZONE,LADAKH,INDIA:IMPLICATION FOR THE TIMING OF INITIATION OF THE COLLISION1 BeckRA ,BurbankDW ,etal.Nature,1995,373( 55) . 2 DeweyJF ,etal.EclogaegeolHelv ,1989,82 ( 717) . 3 RowleyDB .EarthandPlanetaryScienceLetters,1996 ,14 5( 1) . 4 SharmaKK .PhysicsandChemistryoftheEarth ,1990 ,17. 5 VenketasanTR ,PandeK ,GopalanK .EarthandPlanataryScienceLetters,1993…  相似文献   
16.
The nonlinear diffraction of 2D single and twin hulls are studied by employing a mixed Eulerian–Lagrangian model based on a higher-order cubic-spline boundary element solver. Two types of simulations are considered. In the first, waves are generated by a piston-type wave-maker in a rectangular tank and in the second case a nonlinear incident wave is assumed to exist in the tank in which the body is introduced. For the application of this model, the full nonlinear diffraction problem is recast in terms of a perturbation wave-field. Computations are performed for rectangular and triangular hull geometries. Computed results show significant nonlinearities, particularly in the heave force. The twin hull results show the influence of wave interference on the diffraction forces. This interference influences the surge force considerably, but heave force is less affected.  相似文献   
17.
We report here a40Ar-39Ar age of 66.0 ± 0.9 Ma (2σ) for a reversely magnetised tholeiitic lava flow from the Bhimashankar Formation (Fm.), Giravali Ghat, western Deccan province, India. This age is consistent with the view that the 1.8–2 km thick bottom part of the exposed basalt flow sequence in the Western Ghats was extruded very close to 67.4 Ma.  相似文献   
18.
Physico-mechanical properties of rocks have great significance in all operational parts in mining activities, from exploration to final dispatch of material. Compressional wave velocity (p-wave velocity) and anisotropic behaviour of rocks are two such properties which help to understand the rock response under varying stress conditions. They also influence the breakage mechanism of rock. There are different methods to determine thep-wave velocity and anisotropyin situ and in the laboratory. These methods are cumbersome and time consuming. Fuzzy set theory, Fuzzy logic and Neural Networks techniques seem very well suited for typical geotechnical problems. In conjunction with statistics and conventional mathematical methods, hybrid methods can be developed that may prove to be a step forward in modeling geotechnical problems. Here, we have developed and compared two different models, Neuro-fuzzy systems (combination of fuzzy and artificial neural network systems) and Artificial neural network systems, for the prediction of compressional wave velocity.  相似文献   
19.
New40Ar-39Ar thermochronological results from the Ladakh region in the India-Asia collision zone provide a tectono-thermal evolutionary scenario. The characteristic granodiorite of the Ladakh batholith near Leh yielded a plateau age of 46.3 ± 0.6 Ma (2σ). Biotite from the same rock yielded a plateau age of 44.6 ± 0.3 Ma (2σ). The youngest phase of the Ladakh batholith, the leucogranite near Himya, yielded a cooling pattern with a plateau-like age of ∼ 36 Ma. The plateau age of muscovite from the same rock is 29.8 ±0.2 Ma (2σ). These ages indicate post-collision tectono-thermal activity, which may have been responsible for partial melting within the Ladakh batholith. Two basalt samples from Sumdo Nala have also recorded the post-collision tectono-thermal event, which lasted at least for 8 MY in the suture zone since the collision, whereas in the western part of the Indus Suture, pillow lava of Chiktan showed no effect of this event and yielded an age of emplacement of 128.2 ±2.6 Ma (2σ). The available data indicate that post-collision deformation led to the crustal thickening causing an increase in temperature, which may have caused partial melting at the base of the thickened crust. The high thermal regime propagated away from the suture with time.  相似文献   
20.
Summary ?The paper considers a meso-scale, adiabatic, inviscid and Boussisnesq flow of a stably stratified fluid over a three-dimensional (3-D) meso-scale orographic barrier with elliptic contour, with special reference to a part of the Western ghats mountain along west coast of India and on the Khasi-Jayantia hill in the northeast India. The airstream characteristics are simplified by assuming that the upstream wind velocity (U) and buoyancy frequency (N) are constant with height. Solutions for perturbation vertical velocity (w′) and streamline displacement (η′) are expressed in terms of double integrals. These integrals cannot be evaluated exactly, hence they have been approximated by asymptotic expansion method. Side by side solutions using numerical method have also been obtained. The results of the study indicate that the updraft regions in the asymptotic solution are crescent shaped, symmetrical about the axis y = 0, tilting upwind and spreading laterally with height. The study also shows that in both asymptotic solution and numerical solution w′ and η′ fall off down wind of the barrier in the central plane (y = 0), further more in the asymptotic solution w′ and η′ fall off as x −1. The study also indicates that the discrete updraft regions obtained in the numerical solution, when joined, take a crescent shape. Received November 26, 2001; accepted February 27, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号