首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   12篇
  国内免费   2篇
测绘学   9篇
大气科学   4篇
地球物理   57篇
地质学   69篇
海洋学   22篇
天文学   9篇
综合类   1篇
自然地理   3篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   8篇
  2018年   6篇
  2017年   12篇
  2016年   11篇
  2015年   6篇
  2014年   14篇
  2013年   23篇
  2012年   8篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
101.
Wastewater effluents from irrigation and the domestic and industrial sectors have serious impacts in deteriorating water quality in many rivers, particularly in areas under tidal influence. There is a need to develop an approach that considers the impact of human and natural causes of salinization. This study uses a multi-objective optimization–simulation model to investigate and describe the interactions of such impacts in the Shatt al-Arab River, Iraq. The developed model is able to reproduce the salinity distribution in the river given varying conditions. The salinity regime in the river varies according to different hydrological conditions and anthropogenic activities. Due to tidal effects, salinity caused by drainage water is seen to intrude further upstream into the river. The applied approach provides a way to obtain optimal solutions where both river salinity and deficit in water supply can be minimized. The approach is used for exploring the trade-off between these two objectives.  相似文献   
102.
ABSTRACT

Joint frequency analysis and quantile estimation of extreme rainfall and runoff (ERR) are crucial for hydrological engineering designs. The joint quantile estimation of the historical ERR events is subject to uncertainty due to the errors that exist with flow height measurements. This study is motivated by the interest in introducing the advantages of using Hydrologic Simulation Program-Fortran (HSPF) simulations to reduce the uncertainties of the joint ERR quantile estimations in Taleghan watershed. Bivariate ERR quantile estimation was first applied on PAMS-QSIM pairs and the results were compared against the historical rainfall–runoff data (PAMS-Qobs). Student’s t and Frank copulas with respectively Gaussian-P3 and Gaussian-LN3 marginal distributions well suited to fit the PAMS-Qobs and PAMS-QSIM pairs. Results revealed that confidence regions (CRs) around the p levels become wider for PAMS-Qobs compared to PAMS-QSIM, indicating the lower sampling uncertainties of HSPF simulations compared to the historical observations for bivariate ERR frequency analysis.  相似文献   
103.
Ajaz Karim  Jan Veizer   《Chemical Geology》2000,170(1-4):153-177
This study deals with the major ions and isotope systematics for C, O, S, and Sr in the Indus River Basin (IRB). Major ion chemistry of the Indus, and most of its headwater tributaries, follow the order Ca2+>Mg2+>(Na++K+) and HCO3>(SO42−+Cl)>Si. In the lowland tributaries and in some of the Punjab rivers, however, (Na++K+) and (SO42−+Cl) predominate. Cyclic salts, important locally for Na+ in dilute headwater tributaries, constitute about 5% of the annual solutes transported by the Indus. Weathering of two lithologies, sedimentary carbonates and crystalline rocks, controls the dissolved inorganic carbon (DIC) concentrations and its carbon isotope systematics throughout the Indus, but turbulent flow and lower temperatures in the headwaters, and storage in reservoirs in the middle and lower Indus promote some equlibration with atmospheric carbon dioxide. Combined evidence from sulfur and oxygen isotopic composition of sulfates refutes the proposition that dissolution of these minerals plays a significant role in the IRB hydrochemistry and suggests that any dissolved sulfates were derived by oxidation of sulfide minerals.

In the upper Indus, silicate weathering contributes as much as 75% (or even higher in some tributaries) of the total Na+ and K+, declining to less than 40% as the Indus exits the orogen. In contrast, about two-thirds of Ca2+ and Mg2+ in the upper Indus (over 70% in some tributaries) and three-fourth in the lower Indus, are derived from sedimentary carbonates. The 87Sr/86Sr ratios tend to rise with increasing proportions of silicate derived cations in the headwater tributaries and in the upper and middle Indus, but are out of phase or reversed in the lower Indus. Finally, close to the river mouth, the discharge weighted average contribution of silicate derived Ca2++Mg2+ and silicate derived Na++K+ are, respectively, about one-fourth and two-thirds of their total concentrations.  相似文献   

104.
Artificial reefs (ARs) have been deployed in Algarve (Southern Portugal) coastal waters to contribute to the sustainability of local nearshore fisheries. Herein, we describe the colonization process of the recently deployed Faro/Ancão AR, and assess the time until the fish assemblage reaches stability and their seasonal patterns. In addition, we compare the results from the present study with those previously reported for an older AR. The fish assemblages were monitored monthly over a 2‐year period by means of visual census. A rapid increase in fish colonization occurred within the first 4 months. After this initial period the assemblage structure showed high similarity (> 73%). The high rate of colonization of the AR was related to the maturity already achieved by the nearby 14‐year‐old AR and to the fish migration from the Ria Formosa lagoon, a nearby nursery habitat. The reef fish assemblage structure showed a seasonal pattern, mainly associated with recruitment episodes of occasional demersal species (Boops boops, Trachurus trachurus and Pagellus spp.) in spring and summer. A total of 66% of the species found in AR are of commercial and recreational importance. The overall mean density and biomass were 2.8 ind·m?3 and 207 g·m?3. The occasional demersal species accounted for 42% of the fish density. The most important species in terms of biomass belong to the Sparidae family along with Dicentrarchus labrax. The fish assemblage of the new ARs showed higher mean number of species, diversity, density and biomass values than those reported for the older AR. This result was associated with enlargement of the AR area and with the fishing exploitation of the isolated, small and patchy old AR. Moreover, the high biomass values recorded in the new ARs were mainly due to the increased density of D. labrax after AR enlargement. The results of the present study are used to define guidelines for suitable management strategies for the AR areas that are exploited by the local commercial and recreational fisheries.  相似文献   
105.
This paper presents a numerical study of high strength concrete microstructure effects on its uniaxial and biaxial compressive strengths. Concrete is first represented as a set of angular aggregates interacting within a cement paste matrix. Then, a yield design kinematic approach is conducted at the mesoscopic scale in order to determine the concrete compressive strength for a given loading path. The proposed model, having a low computational cost, is able to capture the main microstructure effects already observed in literature on concrete uniaxial compressive strength, in particular, the aggregates volume fraction and maximal size effects. Finally, the proposed model also predicts the biaxial failure envelope of high strength concrete and confirms some experimental trends observed in literature.  相似文献   
106.
RETRACTED ARTICLE: Numerical analysis of multiphase flow in porous material   总被引:7,自引:7,他引:0  
Recent developments in the application of x-ray micro-tomography in laboratory geomechanics have allowed all the individual grains of sand in a test sample to be seen and identified uniquely in 3D. Combining such imaging capabilities with experiments carried out “in situ” within an imaging set-up has led to the possibility of directly observing the mechanisms of deformation as they happen. The challenge has thus become extracting pertinent, quantified information from these rich time-lapse 3D images to elucidate the mechanics at play. This paper presents a new approach (ID-Track) for the quantification of individual grain kinematics (displacements and rotations) of large quantities of sand grains (tens of thousands) in a test sample undergoing loading. With ID-Track, grains are tracked between images based on some geometrical feature(s) that allow their unique identification and matching between images. This differs from Digital Image Correlation (DIC), which makes measurements by recognising patterns between images. Since ID-Track does not use the image of a grain for tracking, it is significantly faster than DIC. The technique is detailed in the paper, and is shown to be fast and simple, giving good measurements of displacements, but suffering in the measurement of rotations when compared with Discrete DIC. Subsequently, results are presented from successful applications of ID-track to triaxial tests on two quite different sands: the angular Hostun sand and the rounded Caicos Ooids. This reveals details on the performance of the technique for different grain shapes and insight into the differences in the grain-scale mechanisms occurring in these two sands as they exhibit strain localisation under triaxial loading.  相似文献   
107.
Abstract

Climate change will likely have severe effects on water shortages, flood disasters and the deterioration of aquatic systems. In this study, the hydrological response to climate change was assessed in the Wei River basin (WRB), China. The statistical downscaling method (SDSM) was used to downscale regional climate change scenarios on the basis of the outputs of three general circulation models (GCMs) and two emissions scenarios. Driven by these scenarios, the Soil and Water Assessment Tool (SWAT) was set up, calibrated and validated to assess the impact of climate change on hydrological processes of the WRB. The results showed that the average annual runoff in the periods 2046–2065 and 2081–2100 would increase by 12.4% and 45%, respectively, relative to the baseline period 1961–2008. Low flows would be much lower, while high flows would be much higher, which means there would be more extreme events of droughts and floods. The results exhibited consistency in the spatial distribution of runoff change under most scenarios, with decreased runoff in the upstream regions, and increases in the mid- and lower reaches of the WRB.
Editor Z.W. Kundzewicz; Associate editor D. Yang  相似文献   
108.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   
109.
This study examined the relative adequacy of active landfills between states in Malaysia. The percentages of closed landfills were determined. The accessibility and loading of the landfills were examined. The characteristics of each landfill studied were noted. The study involved the compilation and analyses of data on groundwater, stream water and current land use surrounding landfills. Results of the study showed that the number of active landfills was not adequate to handle solid waste disposal. The potential of alternative approaches was examined and discussed.  相似文献   
110.
The ecological condition and biodiversity values of floodplain wetlands are highly dependent on the hydrological connectivity of wetlands to adjacent rivers. This paper describes a method for quantifying connectivity between floodplain wetlands and the main rivers in a wet tropical catchment of northern Australia. We used a one‐dimensional hydrodynamic model to simulate time‐varying water depths across the stream network (i.e. rivers, streams and man‐made drains). The timing and duration of connectivity of seven wetlands (four natural and three artificial) with the two main rivers in the catchment were then calculated for different hydrological conditions. Location and areal extent of the wetlands and the stream network were identified using high‐resolution laser altimetry, and these data formed key inputs to the hydrodynamic model. The model was calibrated using measured water depths and discharges across the floodplain. An algorithm was developed to identify contiguous water bodies at daily time steps, and this gave the temporal history of connection and disconnection between wetlands and the rivers. Simulation results show that connectivity of individual wetlands to both rivers varies from 26 to 365 days during an average hydrological condition. Location, especially proximity to a main river, and wetland type (natural stream or artificial drain) were identified as key factors influencing these levels of connectivity. Some natural wetlands maintain connection with the river for most or all of the year, whereas the connectivity of some artificial wetlands varies from 26 to 36 days according to their patterns of network connection to adjacent rivers – a result that has important implications for the accessibility of these types of wetland to aquatic biota. Using readily available river gauge data, we also show how connectivity modelling can be used to identify periods when connectivity has fallen below critical thresholds for fish movement. These connectivity patterns within the floodplain network are central to the setting of river flows that will meet environmental requirements for biota that use floodplain wetlands during their life history. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号