首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1355篇
  免费   64篇
  国内免费   22篇
测绘学   25篇
大气科学   125篇
地球物理   336篇
地质学   449篇
海洋学   146篇
天文学   211篇
综合类   7篇
自然地理   142篇
  2022年   12篇
  2021年   18篇
  2020年   15篇
  2019年   26篇
  2018年   37篇
  2017年   28篇
  2016年   41篇
  2015年   43篇
  2014年   43篇
  2013年   73篇
  2012年   54篇
  2011年   49篇
  2010年   59篇
  2009年   69篇
  2008年   63篇
  2007年   49篇
  2006年   51篇
  2005年   42篇
  2004年   31篇
  2003年   48篇
  2002年   27篇
  2001年   33篇
  2000年   34篇
  1999年   22篇
  1998年   23篇
  1997年   18篇
  1996年   10篇
  1995年   14篇
  1994年   19篇
  1993年   19篇
  1992年   9篇
  1991年   13篇
  1990年   19篇
  1989年   15篇
  1987年   12篇
  1986年   8篇
  1985年   21篇
  1984年   18篇
  1983年   19篇
  1982年   31篇
  1981年   24篇
  1980年   22篇
  1979年   20篇
  1978年   18篇
  1977年   21篇
  1976年   18篇
  1975年   14篇
  1974年   16篇
  1973年   18篇
  1971年   8篇
排序方式: 共有1441条查询结果,搜索用时 15 毫秒
181.
Understanding the stratigraphic fill and reconstructing the palaeo‐hydrology of incised valleys can help to constrain those factors that controlled their origin, evolution and regional significance. This condition is addressed through the analysis of a large (up to 18 km wide by 80 m deep) and exceptionally well‐imaged Late Pleistocene incised valley from the Sunda Shelf (South China Sea) based on shallow three‐dimensional seismic data from a large (11 500 km2), ‘merge’ survey, supplemented with site survey data (boreholes and seismic). This approach has enabled the characterization of the planform geometry, cross‐sectional area and internal stratigraphic architecture, which together allow reconstruction of the palaeo‐hydrology. The valley‐fill displays five notable stratigraphic features: (i) it is considerably larger than other seismically resolvable channel forms and can be traced for at least 180 km along its length; (ii) it is located in the axial part of the Malay Basin; (iii) the youngest part of the valley‐fill is dominated by a large (600 m wide and 23 m deep), high‐sinuosity channel, with well‐developed lateral accretion surfaces; (iv) the immediately adjacent interfluves contain much smaller, dendritic channel systems, which resemble tributaries that drained into the larger incised valley system; and (v) a ca 16 m thick, shell‐bearing, Holocene clay caps the valley‐fill. The dimension, basin location and palaeo‐hydrology of this incised valley leads to the conclusion that it represents the trunk river, which flowed along the length of the Malay Basin; it connected the Gulf of Thailand in the north with the South China Sea in the south‐east. The length of the river system (>1200 km long) enables examination of the upstream to downstream controls on the evolution of the incised valley, including sea‐level, climate and tectonics. The valley size, orientation and palaeo‐hydrology suggest close interaction between the regional tectonic framework, low‐angle shelf physiography and a humid‐tropical climatic setting.  相似文献   
182.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   
183.
In this paper, complete geometric symmetry of extended quantum Zakharov–Kuznetsov (QZK) equation are investigated. All of the geometric vector fields for the new extended QZK equation are presented. At the same time, a plethora of exact solutions are obtained by the application of the group theorem. In addition, 1-soliton solution of the extended QZK equation with power law nonlinearity is obtained by the aid of traveling wave hypothesis with the necessary constraints in place for the existence of the soliton.  相似文献   
184.
185.
Sulfuric acid hydrate has been proposed as an important species on Europa's surface, the acid being produced by radiolysis of surficial sulfur compounds. We investigated the spectral properties of disordered and crystalline forms of sulfuric acid and suggest that the hydration properties of Europa's hypothesized sulfuric acid lie between two end members: liquid sulfuric acid and its higher crystalline hydrates. The spectra of these end members are similar except for spectral shifts at the band edges. We measured the optical constants of sulfuric acid octahydrate and used these with simple radiative transfer calculations to fit Europa spectra obtained by Galileo's Near Infrared Mapping Spectrometer (NIMS). The global distribution of the hydrate that we associate here with hydrated sulfuric acid shows a strong trailing-side enhancement with a maximum fractional hydrate abundance of 90% by volume, corresponding to a sulfur atom to water molecule ratio of 10%. The hydrate concentration spatially correlates with the ultraviolet and visible absorption of the surface and with the sulfur dioxide concentration. The asymmetric global distribution is consistent with Iogenic plasma ion implantation as the source of the sulfur, possibly modified by electron irradiation and sputtering effects. The variegated distribution also correlates with geologic forms. A high spatial resolution image shows resolved lineae with less hydrate appearing within the lineae than in nearby crustal material. The low concentration of hydrated material in these lineae argues against their conveying sulfurous material to the surface from the putative ocean.  相似文献   
186.
187.
Palynological analyses were completed for the A and B horizons of a forested Mollic Hapludalf to determine type, amount, and distribution of pollen and spores within the soil solum. Hypotheses regarding the origin of pollen and the mechanisms of its movement within soil bodies are also advanced. Pollen downwash within the mineral soil seems to be very slow and confined to the uppermost porous and most homogenized part of the solum. The predominance of non-arboreal pollen at depth was believed to be a result of deposition with the loess parent material. High arboreal pollen frequencies in the upper horizons coupled with increases in non-arboreal types at depth indicate gradual ongoing mixing from the present vegetation into the soil.  相似文献   
188.
Abstract— Several experimentally and naturally shocked silicate samples were analyzed for noble gas contents to further characterize the phenomenon by which ambient gases can be strongly implanted into silicates by shock and to evaluate the possible importance of this process in capturing planetary atmospheres in naturally shocked samples. Gas implantation efficiency is apparently mineral independent, as mono-mineralic powders of oligoclase, labradorite, and diopside and a powdered basalt shocked to 20 GPa show similar efficiencies. The retentivity of shock-implanted gas during stepwise heating in the laboratory is defined in terms of two parameters: activation energy for diffusion as determined from Arrhenius plots, and the extraction temperature at which 50% of the gas is released, both of which correlate with shock pressure. These gas diffusion parameters are essentially identical for radiogenic 40Ar and shock-implanted 40Ar in oligoclase and labradorite shocked to 20 GPa, suggesting that the two 40Ar components occupy analogous lattice sites. Our experiments indicate that gas implantation occurs through an increasing production of microcracks/defects in the lattice with increasing shock pressure. The ease of diffusive loss of implanted gas is controlled by the degree of annealing of these microcracks/defects. Identification of a shock-implanted component requires relatively large concentrations of implanted gas which is strongly retained (i.e., moderate activation energy) in order to separate implanted gas from surface adsorbed gases. Literature data on shocked terrestrial samples indicate only weak evidence for shock-implanted gases, with an upper limit for 40Ar of ~ 10?6 cm3STP/g. New analyses of shocked samples from the Wabar Crater indicate the presence of shock-implanted Ar, having concentrations (~ 10?4 cm3STP/g) and activation energies for diffusive loss which are essentially that expected from experimental studies. Lack of sufficient target porosity or the presence of ground water may explain the sparse evidence for shock-implanted gas at other terrestrial craters. Although Wabar Crater may represent an unusually favorable environment on Earth for shock-implanting gases, surfaces of other planetary bodies, such as Mars, may frequently provide such environments. Analyses of returned samples from old Martian terraines may document temporal changes in earlier atmospheric composition.  相似文献   
189.
The lowest addition of mercury (0.1 ug Hg 1−1) was used in CEEs for research on mercury flux, speciation and budget. The removal behavior of mercury by phytoplankton in water columns of CEEs can be described by first order kinetic equations for total and particulate mercury in the CEE spiked by mercury. The removal rate of mercury in water columns depends on the size and productivity of phytoplanton in a water column to which mercuric ions were added. A 4.4 day half-life time and a 2.8 day half-life time for total and particulate mercury respectively was obtained in diatom bloom. During microflagellate bloom a 30 day total mercury half-life time was estimated with increase of particulate mercury in the water column. The 0.010 ug Hg cm−2y−1 mercury flux rate that was attained in the control bag agreed with the values from field measurements in Saanich Inlet where the bags were launched. The proportion of total mercury to dissolved and particulate mercury depended also on the size, productivity, and concentration of mercury in a water column. A more or less constant distribution of mercury species in the control bag was observed as follows: dissolved Hg 0.73, particulate Hg 0.27, inorganic Hg 0.42, dissolved organic Hg 0.31. After spiking with mercury, the particulate mercury rose rapidly and reached to over 70% of the total mercury. The concentration factor of mercury by phytoplankton in the CEEs in the order of 105 was consistent with the results from field measurements in Saanich Inlet. The mercury recovery from the water column, sediment, water with sediment, and the CEE bag walls was only 52.3% of total mercury spiked in the CEE. The losses of mercury by vaporization into the ambient air and diffusion through the wall of the enclosure should be considered. This paper was published in Chinese inOcean. Limn. Sinica,17(4):307–317, 1986.  相似文献   
190.
In order to decipher the origin of eclogite in the high‐P/T Sanbagawa metamorphic belt, SHRIMP U–Pb ages of zircons from quartz‐bearing eclogite and associated quartz‐rich rock (metasandstone) were determined. One zircon core of the quartz‐rich rock yields an extremely old provenance age of 1899 ± 79 Ma, suggesting that the core is of detrital origin. Eight other core ages are in the 148–134 Ma range, and are older than the estimated age for trench sedimentation as indicated by the youngest radiolarian fossil age of 139–135 Ma from the Sanbagawa schists. Ages of metamorphic zircon rims (132–112 Ma) from the quartz‐rich rock are consistent with metamorphic zircon ages from the quartz‐bearing eclogite, indicating that eclogite facies metamorphism peaked at 120–110 Ma. These new data are consistent with both the Iratsu eclogite body and surrounding highest‐grade Sanbagawa schists undergoing coeval subduction‐zone metamorphism, and subsequent re‐equilibration under epidote amphibolite facies conditions during exhumation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号