首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   3篇
  国内免费   1篇
地球物理   13篇
地质学   19篇
海洋学   18篇
天文学   8篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2015年   5篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
41.
The migration of contaminant through soil is usually modeled using the advection‐dispersion equation and assumes that the porous media is stationary without introducing a constitutive equation to represent soil structure. Consequently, time‐dependent deformation induced by soil consolidation or physical remediation is not considered, despite the need to consider these variables during planning for the remediation of contaminated ground, the prediction of contaminated groundwater movement, and the design of engineered landfills. This study focuses on the numerical modeling of solute transfer during consolidation as a first step to resolve some of these issues. We combine a coupling theory‐based mass conservation law for soil‐fluid‐solute phases with finite element modeling to simulate solute transfer during deformation and groundwater convection. We also assessed the sensitivity of solute transfer to the initial boundary conditions. The modeling shows the migration of solute toward the ground surface as a result of ground settlement and the dissipation of excess pore water pressure. The form of solute transport is dependent on the ground conditions, including factors such as the loading schedule, contamination depth, and water content. The results indicate that an understanding of the interaction between coupling phases is essential in predicting solute transfer in ground deformation and could provide an appropriate approach to ground management for soil remediation.  相似文献   
42.
The new scale Mt of tsunami magnitude is a reliable measure of the seismic moment of a tsunamigenic earthquake as well as the overall strength of a tsunami source. This Mt scale was originally defined by Abe (1979) in terms of maximum tsunami amplitudes at large distances from the source. A method is developed whereby it is possible to determine Mt at small distances on the basis of the regional tsunami data obtained at 30 tide stations in Japan. The relation between log H, maximum amplitude (m) and log Δ, a distance of not less than 100 km away from the source (km) is found to be linear, with a slope close to 1.0. Using three tsunamigenic earthquakes with known moment magnitudes Mw, for calibration, the relation, Mt = log H + log Δ + D, is obtained, where D is 5.80 for single-amplitude (crest or trough) data and 5.55 for double-amplitude (crest-to-trough) data. Using a number of tsunami amplitude data, Mt is assigned to 80 tsunamigenic earthquakes that occurred in the northwestern Pacific, mostly in Japan, during the period from 1894 to 1981. The Mt values are found to be essentially equivalent to Mw for 25 events with known Mw. The 1952 Kamchatka earthquake has the largest Mt, 9.0. Of all the 80 events listed, at least seven unusual earthquakes which generated disproportionately-large tsunamis for their surface-wave magnitude Ms are identified from the relation. From the viewpoint of tsunami hazard reduction, the present results provide a quantitative basis for predicting maximum tsunami amplitudes at a particular site.  相似文献   
43.
The annual transport of anthropogenic carbon (Canth) to the North Pacific Intermediate Water (NPIW) from the Western Subarctic Gyre (WSG) has been re-estimated by using newly estimated Oyashio transport and Canth concentration, the latter calculated by the recently-established “ΔC*” method with some modifications. Estimated annual Canth transport through the nearshore Oyashio west of 146°E was 0.020 ± 0.010 GtC y−1, closely approximating the previous estimation based on a 1-D model calibrated with the CFC vertical distribution. The present study, however, found that an additional 0.025 ± 0.010 GtC y−1 of Canth was transported into NPIW in the region east of 146°E. Total Canth transport, 0.045 GtC y−1, contributes about 35% of annual Canth accumulation of the whole temperate North Pacific. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
44.
Primary productivity was measured byin situ method using13C in the offshore Oyashio region in the spring (May) and summer (September) of 1990. Most of the values were within the range of 0.1 to 4 gC 1–1 h–1 although a very large value, 7.96 gC l–1 h–1, was observed in summer. Most daily primary production fell within the range of 372 to 633 mgC m–2 d–1 although a very large value, 2,109 mgC m–2 d–1, was observed around the frontal area in summer. Chlorophylla (Chl.a) exceeded 1 g l–1 in many cases, and the maximum was 4.61 g l–1 in spring and 7.53 g l–1 in summer. Most primary productivity per unit Chl.a (photosynthetic assimilation ratio) was within the range of 0.1 to 3 gC gChl.a –1 h–1 although higher values, 3–6 gC gChl.a –1 h–1, were observed where small-size phytoplanktons (<2 m) were dominant. These results were compared with results obtained until now in the Oyashio region. The values beyond the range obtained so far in the offshore region were also observed in this study. Furthermore, it was pointed out that the size composition of phytoplankton community has significant influence on the results of Chl.a and photosynthetic assimilation ratio in the Oyashio region.  相似文献   
45.
In order to determine quantitatively the reason for the high productivity in the Oyashio Region, which is the southwest part of the Pacific Subarctic Region, the annual-mean vertical circulation of nitrogen in the region was estimated from the vertical profiles of nitrate, dissolved oxygen and salinity, and sediment-trap data by adapting them to the balance equations. Estimates of the upwelling velocity (1.7×10−5cm sec−1) and the vertical diffusivity (2.1 cm2 sec−1) in the abyssal zone and the primary and secondary productivities (44 and 4 mgN m−2day−1, respectively) in the euphotic zone were close to those of previous works. The estimated vertical circulation of nitrogen strongly suggested that, since the divergence (5 mgN m−2day−1) is caused by the abyssal convergence (6 mgN m−2day−1) and the positive precipitation, the local new production (22 mgN m−2day−1) necessarily exceeds not only the sinking flux (10 mgN m−2day−1) itself but also the sum of the sinking flux and the downward diffusion of dissolved and particulate organic matter (7 mgN m−2day−1) produced probably in the euphotic zone. The important roles of the abyssal circulation, the winter convection, and the metabolic activity in the bathyal zone to support the high productivity in the euphotic zone were clarified quantitatively.  相似文献   
46.
The distribution and dynamics of water molecules and monovalent cations (Li+, Na+, K+, Cs+, and H3O+) on muscovite surfaces were investigated by molecular dynamics (MD) simulations. The direct comparison of calculated X-ray reflectivity profiles and electron density profiles with experiments revealed the precise structure at the aqueous monovalent electrolyte solutions/muscovite interface. To explain the experimentally observed electron density profiles for the CsCl solution-muscovite interface, the co-adsorption of Cs+ and Cl ion pairs would be necessary. Two types of inner-sphere complexes and one type of outer-sphere complex were observed for hydrated Li+ ions near the muscovite surface. For Na+, K+, Cs+, and H3O+ ions, the inner-sphere complexes were stable on the muscovite surface. The density oscillation of water molecules was observed to approximately 1.5 nm from the muscovite surface. The number of peaks and the locations for the density of water oxygen atoms were almost similar among the water molecules coordinated to Li+, Na+, K+, and H3O+ ions adsorbed on the muscovite surfaces. The water molecules around Cs+ ions that were adsorbed to muscovite surfaces seemed to avoid coordinating with Cs+ ions on the surface, and the density of water oxygen near the muscovite surface decreased relative to that in a bulk state. There was no significant difference in self-diffusion, viscosity, retention time, and reorientation time of water molecules among different cations adsorbed to muscovite surfaces. These translational and rotational motions of water molecules located at less than 1 nm from the muscovite surfaces were slower than those in a bulk state. A significant difference was observed for the exchange times of water molecules around monovalent cations. The exchange time of water molecules was long around Li+ ions and decreased with an increase in the ionic radius.  相似文献   
47.
An evaluation method for the mechanical behavior of unsaturated soils is studied in this paper. Although the mechanical behavior of unsaturated soils is complicated, a simple modeling is preferable in practice. This is because the soil properties are not homogeneous and ground data is limited when structures are being designed. In addition, in order to evaluate the reliability of the design, the physical meanings of the parameters applied in the prediction model should be clear. Firstly, the authors study the relationship between compaction curves and compression indexes in the unsaturated state that is used in the proposed constitutive model. Based on the constitutive model, the stress paths for constant volume shear tests are formulated under a constant void ratio condition and the stress paths for undrained shear tests are calculated under a constant water content condition. In the case of unsaturated specimens, the volume of these specimens changes with the shear deformation and the stress paths depend on the initial degree of saturation. The results of the calculation qualitatively describe the test results by considering the changes in effective confining pressure in the undrained condition and the water retention curves.  相似文献   
48.
This paper synthesizes the state-of-the art of the various laboratory testing techniques presently available for measuring the water hydraulic constitutive functions of unsaturated soils. Emphasis is on the laboratory testing techniques for measuring the soil–water retention curves and the water hydraulic conductivity functions of unsaturated soils. The significant recent advances in the investigation of the hydraulic behaviour of unsaturated swelling soils, are also presented. Comprehensive recent references on each measurement method are listed and discussed.  相似文献   
49.
The aim of this paper is to get new critertia for spectral classification of some early type stars which depend on the flux in the UV region λ λ 1500–2500 by carrying out spectrophotometric analysis of observational ultraviolet data of stars obtained by the S2/68 Ultraviolet Sky Survey Telescope (UVSST) aboard the European Space Research Organization (ESRO) Satellite TD1. We have developed these new criteria based on the Intrinsic Ultraviolet Colour Index (IUI), and the Intrinsic Flux Ratio (IFR). Using these quantities we are going to represent the results of spectral classification of 323 early type stars mainly from spectral type B and A. The results of calculations of the Intrinsic Flux Ratios for the stars under investigation together with their Colour Temperatures (Tc) are given. Comparison between our suggested two new criteria with the MK classification system and Cucchairo (1980) classification system was carried out. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
50.
Arabian Journal of Geosciences - Three classes of dust over the southwest region of the Kingdom of Saudi Arabia were classified based on both the values and distribution of the TOMS Aerosol Index....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号