首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   8篇
  国内免费   1篇
大气科学   4篇
地球物理   36篇
地质学   31篇
海洋学   28篇
天文学   54篇
综合类   1篇
自然地理   8篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   8篇
  2010年   11篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   12篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   1篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   7篇
  1985年   3篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1962年   1篇
排序方式: 共有162条查询结果,搜索用时 343 毫秒
161.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   
162.
A numerical procedure for a dynamic non-linear finite element analysis is proposed here to analyse three-dimensional reinforced concrete shear wall structures subjected to earthquake motions. A shear wall is modelled as a quasi-three dimensional structure which is composed of plane elements considering the in-plane stiffness of orthogonal flange panels. The proposed constitutive model is based on the non-linearity of reinforcement and concrete in which the tension stiffening in tension and the degradation of stiffness and strength in compression of concrete after cracking are considered. The acceleration-pulse method, which is a kind of explicit analytical procedure, is employed to solve the non-linear dynamic equations, where the dynamic equation can be solved without stiffness matrix and so the iterative procedure is not necessary for descending portion of stress–strain relationship caused by cracking and softening after compressive strength in concrete. The damping effect is considered by assuming equivalent viscous damping which can give good cyclic behaviours of inertia force vs. displacement relationships. This analytical method was applied to a test specimen of a reinforced concrete shear wall with a H-shaped section which was vibrated up to failure by using a large-scale shaking table with high -performance in Japan. The test was performed as one of the dynamic model tests for evaluation of seismic behaviour of nuclear reactor buildings. The calculations were performed sequentially from the elastic range to failure. The comparison with the test results shows that this approach has good accuracy. © 1997 by John Wiley & Sons Ltd  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号