首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   3篇
  国内免费   10篇
测绘学   1篇
大气科学   3篇
地球物理   48篇
地质学   45篇
海洋学   52篇
天文学   25篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   9篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   14篇
  2010年   8篇
  2009年   8篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
排序方式: 共有177条查询结果,搜索用时 203 毫秒
31.
32.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   
33.
34.
CTD (Conductivity-Temperature-Depth) data at five stations across the Izu-Ogasawara Trench at 34°N were examined. Geostrophic velocity was in accordance with the directly measured currents. Above the trench floor, potential temperature increased at a rate of 0.6 m°C/1000 db from 8000 db to 9417 db, and salinity increased from 8300 db to the bottom. Potential density was almost constant at 7100–8700 db, and it increased to the bottom. Above the eastern and western flanks, inversion of potential density was indicated in the bottom layers with an increase of potential temperature and a decrease of salinity, suggesting geothermal heating and outflow of ground water.  相似文献   
35.
Index species of zooplankton of the Oyashio water are found in and beneath the salinity minimum layer in Sagami Bay. In order to clarify the intrusion path of the intermediate Oyashio Water (or the water of the Mixed Water Region), the oceanographic conditions off the Boso Peninsula are studied by using available hydrographic data obtained mainly by Japan Meteorological Agency. The cross-sectional salinity distribution along KJ line which extends southeastward from off the tip of the peninsula always indicates the existence of a low salinity patch just off the coast in the salinity minimum layer. This water is well separated from the offshore low salinity water which is considered as the water in the western margin of the so-called North Pacific Intermediate Water. We refer to the former water as the coastal salinity-minimum-layer (SML) water and to the latter as the offshore SML water. The coastal SML water is usually bounded by the current zone of the Kuroshio. The existence of the coastal SML water seems to indicate the possible pathway of the intermediate Oyashio water along the Boso Peninsula into Sagami Bay. The detailed water type analysis is made in T-S plane, S-st plane, and O2-st plane. There is no significant difference in distribution ranges of the water types between the coastal SML water and the offshore SML water. However, the water types of the coastal SML water is not uniformly distributed, and the water can be classified into two groups: group A with relatively high oxygen content and relatively low salinity value and group B with relatively low oxygen content and relatively high salinity value. Group A is thought to be associated with strong event-like intrusions, the details of which will be discussed in Part II.  相似文献   
36.
The northern part of Okinawa Island suffers from red soil pollution—runoff of red soil into coastal seawater—which damages coastal ecosystems and scenery. To elucidate the impacts of red soil pollution on the oxidizing power of seawater, hydrogen peroxide (HOOH) and iron species including Fe(II) and total iron (Fe(tot), defined as the sum of Fe(II) and Fe(III)) were measured simultaneously in seawater from Taira Bay (red-soil-polluted sea) and Sesoko Island (unpolluted sea), off the northern part of Okinawa Island, Japan. We performed simultaneous measurements of HOOH and Fe(II) because the reaction between HOOH and Fe(II) forms hydroxyl radical (•OH), the most potent environmental oxidant. Gas-phase HOOH concentrations were also measured to better understand the sources of HOOH in seawater. Both HOOH and Fe(II) in seawater showed a clear diurnal variation, i.e. higher in the daytime and lower at night, while Fe(tot) concentrations were relatively constant throughout the sampling period. Fe(II) and Fe(tot) concentrations were approximately 58% and 19% higher in red-soil-polluted seawater than in unpolluted seawater. Gas-phase HOOH and seawater HOOH concentrations were comparable at both sampling sites, ranging from 1.4 to 5.4 ppbv in air and 30 to 160 nM in seawater. Since Fe(II) concentrations were higher in red-soil-polluted seawater while concentrations of HOOH were similar, •OH would form faster in red-soil-polluted seawater than in unpolluted seawater. Since the major scavenger of •OH, Br, is expected to have similar concentrations at both sites, red-soil-polluted seawater is expected to have higher steady-state •OH concentrations.  相似文献   
37.
An examination of behaviors of a subsurface drogue and a subsequent examination of current measurement with a drifter comprising the drogue as its important part are made in the channel between Oshima and Izu Peninsula. The drogue submerged to the anticipated depth of 300 m within 10 minutes after launching. Since then the drogue kept its depth and operated normally. From the comparison with the velocity measurement by the use of a currentmeter moored at a station in the vicinity of the drifter's track, it is verified that the drifter's motion well reflects the motion of a water parcel around the drogue.  相似文献   
38.
The subsurface current of the Japan Sea was observed by two Autonomous Lagrangian Circulation Explorer (ALACE) floats. One float, having a 20-day cycle, was deployed on 29 July 1995 in the eastern Japan Basin and drifted in the northeastern part of the basin until 15 September 2000. The other float, with a 10-day cycle, was deployed on 4 August 1995 in the western Japan Basin and drifted in the western Japan Basin, in the Yamato Basin and around the Yamato Rise until it reached its life limit in mid-May 2000. An anticlockwise circulation in the eastern Japan Basin was observed and it was assumed to be in the upper portion of the Japan Sea Proper Water (UJSPW) or in the intermediate water. The spatial scale of the circulation increased as the depth decreased. A clockwise circulation was observed around the Yamato Rise in the UJSPW. Smaller clockwise and anticlockwise rotations were observed in the western Japan Sea, where a seasonal variation was seen in drift speed with different phase by depth. The correlation coefficient between drift speeds of two floats indicated little coherence among the subsurface circulation between the east and the west of the Japan Basin, or between the north and the south of the subpolar front. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
39.
Deep CTD Casts in the Challenger Deep,Mariana Trench   总被引:1,自引:0,他引:1  
On 1 December 1992, CTD (conductivity-temperature-depth profiler) casts were made at three stations in a north-south section of the Challenger Deep to examine temperature and salinity profiles. The station in the Challenger Deep was located at 11°22.78′ N and 142°34.95′ E, and the CTD cast was made down to 11197 db or 10877 m, 7 m above the bottom by reeling out titanium cable of 10980 m length. The southern station was located at 11° 14.19′ N and 142°34.79′ E, 16.1 km from the central station, where water depth is 9012 m. CTD was lowered to 7014 db or 6872 m. The northern station was located at 11°31.47′ N and 142° 35.30′ E, 15.9 km from the central station, and CTD was lowered to 8536 db or 8336 m, 10 m above the bottom. Below the thermocline, potential temperature decreased monotonously down to 7300–7500 db beyond a sill depth between 5500 m and 6000 m, or between 5597 db and 6112 db, of the trench. Potential temperature increased from 7500 db to the bottom at a constant rate of 0.9 m°C/1000 db. Salinity increased down to 6020–6320 db, and then stayed almost constant down to around 9000 db. From 9500 db to the bottom, salinity increased up to 34.703 psu at 11197 db. Potential density referred to 8000 db increased monotonously down to about 6200 db, and it was almost constant from 6500 db to 9500 db. Potential density increased from 9500 db in accordance with the salinity increase. Geostrophic flows were calculated from the CTD data at three stations. Below an adopted reference level of 3000 db, the flow was westward in the north of Challenger Deep and eastward in the south, which suggests a cyclonic circulation over the Challenger Deep. Sound speed in Challenger Deep was estimated from the CTD data, and a relation among readout depth of the sonic depth recorder, true depth, and pressure was examined.  相似文献   
40.
The relationship between form drag and the zonal mean velocity of steady states is investigated in a very simple system; a barotropic quasi-geostrophic β channel with sinusoidal topography. When a steady solution is calculated by the modified Marquardt method, keeping the zonal mean velocity constant as a parameter, the characteristic of the solution changes at a phase speed of a wave with a wavenumber higher than that of the bottom topography. For velocities smaller than this critical value, there exists a stable quasi-linear solution similar to the linear solution. For larger velocities, there exist three solutions whose form drag is very large. In addition, the resonant velocity of the mode, whose wavenumber is the same as the bottom topography, has no effect on these solutions. When the quiescent fluid is accelerated by a constant wind stress, acceleration stops around the critical velocity for a wide range of the wind stress. If the wind stress is too large for the acceleration to stop, the zonal current speed continues to increase infinitely. It is implied that the zonal velocity of equilibrium is mainly determined, not by the wind stress, but by the amplitude of the bottom topography and the viscosity coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号