首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   9篇
地球物理   29篇
地质学   39篇
海洋学   27篇
天文学   33篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   11篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有149条查询结果,搜索用时 31 毫秒
91.
Iheya‐North‐Knoll is one of the small knolls covered with thick sediments in the Okinawa Trough back‐arc basin. At the east slope of Iheya‐North‐Knoll, nine hydrothermal vents with sulfide mounds are present. The Integrated Ocean Drilling Program (IODP) Expedition 331 studied Iheya‐North‐Knoll in September 2010. The expedition provided us with the opportunity to study clay minerals in deep sediments in Iheya‐North‐Knoll. To reveal characteristics of clay minerals in the deep sediments, samples from the drilling cores at three sites close to the most active hydrothermal vent were analyzed by X‐ray diffraction, scanning electron microscope and transmission electron microscope. The sediments are classified into Layer 0 (shallow), Layer 1 (deep), Layer 2 (deeper) and Layer 3 (deepest) on the basis of the assemblage of clay minerals. Layer 0 contains no clay minerals. Layer 1 contains smectite, kaolinite and illite/smectite mixed‐layer mineral. Layer 2 contains chlorite, corrensite and chlorite/smectite mixed‐layer mineral. Layer 3 is grouped into three sub‐layers, 3A, 3B and 3C; Sub‐layer 3A contains chlorite and illite/smectite mixed‐layer mineral, sub‐layer 3B contains chlorite/smectite and illite/smectite mixed‐layer minerals, and sub‐layer 3C contains chlorite and illite. Large amounts of di‐octahedral clay minerals such as smectite, kaolinite, illite and illite/smectite mixed‐layer mineral are found in Iheya‐North‐Knoll, which is rarely observed in hydrothermal fields in mid‐ocean ridges. Tri‐octahedral clay minerals such as chlorite, corrensite and chlorite/smectite mixed‐layer mineral in Iheya‐North‐Knoll have low Fe/(Fe + Mg) ratios compared with those in mid‐ocean ridges. In conclusion, the characteristics of clay minerals in Iheya‐North‐Knoll differ from those in mid‐ocean ridges; di‐octahedral clay minerals and Fe‐poor tri‐octahedral clay minerals occur in Iheya‐North‐Knoll but not in mid‐ocean ridges.  相似文献   
92.
93.
Introduction Traditional agriculture based on indigenous knowledge (IK) has been practiced in many areas for centuries. Such practices are often the basis of very sustainable technologies, which are potentially suitable for developmental programs. Polthanee (2001) reported that such farmer practices have been repeatedly found to be valid, rational and usually suited to the local environmental conditions. Moreover, with increased under- standing of agro-ecosystems, professionals in agricultura…  相似文献   
94.
Supercooled drizzle (freezing drizzle) was observed at Inuvik, N.W.T., Canada (68°22′N, 133°42′W) on December 20, 21 and 27, 1995. Meteorological conditions in which the supercooled drizzle could form under low temperatures (colder than −20°C) in the mid-winter season of the Canadian Arctic were examined from the sounding data and data measured by a passive microwave radiometer at ground level. The following results were obtained. (1) Supercooled drizzle fell to the ground with ice pellets and frozen drops on snow crystals. (2) The maximum size of supercooled drizzle particles increased as the depth of cloud layer saturated with respect to water increased. (3) Because a layer of air temperature higher than 0°C was not detected from the sounding data at Inuvik, melting of snow particles was impossible. It was concluded, therefore, that supercooled drizzle was formed by the condensation–coalescence process below freezing temperature.  相似文献   
95.
96.
ASCA (ASTRO-D), the fourth X-ray astronomy satellite of ISAS, was successfully launched on February 20, 1993. It carries nested thin-foil X-ray mirrors providing a large effective area over a wide energy range up to 12 keV. A set of CCD cameras and imaging gas scintillation proportional counters are placed on the focal plane.ASCA is a high-throughput imaging and spectroscopic X-ray observatory with these instruments.  相似文献   
97.
Two successive X-ray outbursts of the recurrent X-ray pulsar GX301-2 were observed in April and May, 1982 from Hakucho. Apart from general increase during flares lasting for several days, the X-ray intensity was highly variable on a time-scale of the order of an hour. The outstanding feature is that the amplitude of 700 s pulsation of GX301-2 changes rapidly in a very wide range. When the pulsation is distinct, the depth of modulation is as large as 60%; whereas, the pulse amplitude occasionally diminishes almost to an undetectable level so that the observed X-rays become unpulsed. Such drastic changes are found to occur at any intensity levels observed. In several cases of abrupt changes of pulse amplitude, the intensity at the pulse bottom remained essentially unchanged. These properties suggest a hypothesis that the X-ray emission from GX301-2 consists of a pulsating component with variable amplitude and a non-pulsating component of less variable intensity.  相似文献   
98.
The formation processes of the late Neogene sedimentary basins in Northern Hokkaido have been investigated on the basis of rock magnetism, structural geology and numerical modelling. Untilted site‐mean directions of remanent magnetization of the Wakkanai Formation, obtained from oriented core samples in Horonobe, suggest remarkable counterclockwise block rotation (ca. 70°) since the late Neogene. Uniform microscopic fabric of the siliceous sediments was inferred from the alignment of the principal axes of the anisotropy of magnetic susceptibility (AMS). After correction for tectonic rotation, the maximum axis of AMS, which reflects the sedimentary fabric of the dominant paramagnetic minerals, is in an E‐W direction, which is concordant with the influx direction of diatomaceous particles into the N‐S elongate sedimentary basins. The difference in the bulk initial magnetic susceptibility of the siliceous sediments of the Wakkanai Formation between the depocenter of the basin and its peripheral part implies that terrigenous non‐magnetic fraction has been sorted out during transportation of the detrital grains as gravity flows. As for the development mechanism of the N‐S elongate late Neogene basins in Northern Hokkaido, their depocenter arrangement and subsidence pattern indicates dextral motions upon a longitudinal fault zone along the Eurasian convergent margin. Dislocation modelling was adopted to explain vertical displacement and rotational motion around the study area and successfully restored the deformation pattern based on the assumption of dextral slip at a left‐stepping part of a strand of the transcurrent fault.  相似文献   
99.
The behavior of Io’s atmosphere during and after eclipse is investigated on the basis of kinetic theory. The atmosphere is mainly composed of sulfur dioxide (SO2) gas, which condenses to or sublimates from the frost of SO2 on the surface depending on the variation of surface temperature (~90–114 K). The atmosphere may also contain a noncondensable gas, such as sulfur monoxide (SO) or oxygen (O2), as a minor component. In the present study, an accurate numerical analysis for a model Boltzmann equation by a finite-difference method is performed for a one-dimensional atmosphere, and the detailed structure of unsteady gas flows caused by the phase transition of SO2 is clarified. For instance, the following scenario is obtained. The condensation of SO2 on the surface, starting when eclipse begins, gives rise to a downward flow of the atmosphere. The falling atmosphere then bounces upward when colliding with the lower atmosphere but soon falls again. This process of falling and bounce back of the atmosphere repeats during the eclipse, resulting in a temporal oscillation of the macroscopic quantities, such as the velocity and temperature, at a fixed altitude. For a pure SO2 atmosphere, the amplitude of the oscillation is large because of a fast downward flow, but the oscillation decays rapidly. In contrast, for a mixture, the downward flow is slow because the noncondensable gas adjacent to the surface hinders the condensation of SO2. The oscillation in this case is weak but lasts much longer than in the case of pure SO2. The present paper is complementary to the work by Moore et al. (Moore, C.H., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Stewart, B. [2009]. Icarus 201, 585–597) using the direct simulation Monte Carlo (DSMC) method.  相似文献   
100.
Thermal equation of state of an Al-rich phase with Na1.13Mg1.51Al4.47Si1.62O12 composition has been derived from in situ X-ray diffraction experiments using synchrotron radiation and a multianvil apparatus at pressures up to 24 GPa and temperatures up to 1,900 K. The Al-rich phase exhibited a hexagonal symmetry throughout the present pressure–temperature conditions and the refined unit-cell parameters at ambient condition were: a=8.729(1) Å, c=2.7695(5) Å, V 0=182.77(6) Å3 (Z=1; formula weight=420.78 g/mol), yielding the zero-pressure density ρ0=3.823(1) g/cm3 . A least-square fitting of the pressure-volume-temperature data based on Anderson’s pressure scale of gold (Anderson et al. in J Appl Phys 65:1534–543, 1989) to high-temperature Birch-Murnaghan equation of state yielded the isothermal bulk modulus K 0=176(2) GPa, its pressure derivative K 0 =4.9(3), temperature derivative (?K T /?T) P =?0.030(3) GPa K?1 and thermal expansivity α(T)=3.36(6)×10?5+7.2(1.9)×10?9 T, while those values of K 0=181.7(4) GPa, (?K T /?T) P =?0.020(2) GPa K?1 and α(T)=3.28(7)×10?5+3.0(9)×10?9 T were obtained when K 0 was assumed to be 4.0. The estimated bulk density of subducting MORB becomes denser with increasing depth as compared with earlier estimates (Ono et al. in Phys Chem Miner 29:527–531 2002; Vanpeteghem et al. in Phys Earth Planet Inter 138:223–230 2003; Guignot and Andrault in Phys Earth Planet Inter 143–44:107–128 2004), although the difference is insignificant (<0.6%) when the proportions of the hexagonal phase in the MORB compositions (~20%) are taken into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号