首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   20篇
  国内免费   19篇
测绘学   15篇
大气科学   53篇
地球物理   160篇
地质学   151篇
海洋学   130篇
天文学   11篇
综合类   8篇
自然地理   20篇
  2022年   6篇
  2021年   4篇
  2020年   9篇
  2019年   15篇
  2018年   22篇
  2017年   21篇
  2016年   33篇
  2015年   28篇
  2014年   29篇
  2013年   39篇
  2012年   31篇
  2011年   43篇
  2010年   35篇
  2009年   31篇
  2008年   30篇
  2007年   29篇
  2006年   19篇
  2005年   29篇
  2004年   15篇
  2003年   15篇
  2002年   12篇
  2001年   6篇
  2000年   4篇
  1998年   5篇
  1996年   2篇
  1995年   3篇
  1992年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1970年   1篇
  1958年   1篇
  1955年   1篇
  1951年   4篇
  1950年   1篇
  1949年   2篇
  1948年   3篇
排序方式: 共有548条查询结果,搜索用时 421 毫秒
41.
Fall velocity-diameter relationships for four different snowflake types (dendrite, plate, needle, and graupel) were investigated in northeastern South Korea, and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships. Falling ice crystals (approximately 40 000 particles) were measured with a two-dimensional video disdrometer (2DVD) during a winter experiment from 15 January to 9 April 2010. The fall velocity-diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements: the coefficients (exponents) for different snowflake types were 0.82 (0.24) for dendrite, 0.74 (0.35) for plate, 1.03 (0.71) for needle, and 1.30 (0.94) for graupel, respectively. These new relationships established in the present study (PS) were compared with those from two previous studies. Hydrometeor types were classified with the derived fall velocity-diameter relationships, and the classification algorithm was evaluated using 3× 3 contingency tables for one rain-snow transition event and three snowfall events. The algorithm showed good performance for the transition event: the critical success indices (CSIs) were 0.89, 0.61 and 0.71 for snow, wet-snow and rain, respectively. For snow events, the algorithm performance for dendrite and plate (CSIs = 1.0 and 1.0, respectively) was better than for needle and graupel (CSIs = 0.67 and 0.50, respectively).  相似文献   
42.
Floodplain ecosystems are affected by flood dynamics, nutrient supply as well as anthropogenic activities. Heavy metal pollution poses a serious environmental challenge. Pollution transfer from the soil to vegetation is still present at the central location of Elbe River, Germany. The goal of this study was to assess and separate the current heavy metal contamination of the floodplain ecosystem, using spectrometric field and laboratory measurements. A standardized pot experiment with floodplain vegetation in differently contaminated soils provided the basis for the measurements. The dominant plant types of the floodplains are: Urtica dioica, Phalaris arundinacea and Alopecurus pratensis, these were also chemically analysed. Various vegetation indices and methods were used to estimate the red edge position, to normalise the spectral curve of the vegetation and to investigate the potential of different methods for separating plant stress in floodplain vegetation. The main task was to compare spectral bands during phenological phases to find a method to detect heavy metal stress in plants. A multi-level algorithm for the curve parameterisation was developed. Chemo-analytical and ecophysiological parameters of plants were considered in the results and correlated with spectral data. The results of this study show the influence of heavy metals on the spectral characteristics of the focal plants. The developed method (depth CR1730) showed significant relationship between the plants and the contamination.  相似文献   
43.
Past studies suggested that a basin-wide regime shift occurred in 1988–1989, impacting marine ecosystem and fish assemblages in the western North Pacific. However, the detailed mechanisms involved in this phenomenon are still yet unclear. In the Ulleung basin of the East Sea, filefish, anchovy and sardine dominated the commercial fish catches in 1986–1992, but thereafter common squid comprised > 60% of the total catch in 1993–2010. To illuminate the mechanisms causing this dramatic shift in dominant fisheries species, I related changes in depth-specific oceanographic conditions from 0 to 500 m to inter-annual changes in the fish assemblage structure from 1986 to 2010. In the upper layer of 50–100 m depths, water temperature suddenly increased in 1987–1989, and consequently warm-water epi-pelagic species (anchovy, chub mackerel, and common squid) became dominant, while sardine, relatively cold-water epi-pelagic species, nearly disappeared. An annual index of the volume transport by the Korea Strait Bottom Cold Water, originating from the deep water of the Ulleung Basin, displayed a sudden intensification in 1992–1993, accompanied by decreased water temperature and increased water density in the deep water and replacement of dominant bentho-pelagic species from filefish, warm-water species, to herring and cod, cold-water species. The results suggest that climate-driven oceanic changes and the subsequent ecological impacts can occur asynchronously, often with time lags of several years, between the upper and the deep layer, and between epi-pelagic and deepwater fish assemblages.  相似文献   
44.
In this study, using the Bjerknes stability (BJ) index analysis, we estimate the overall linear El Niño-Southern Oscillation (ENSO) stability and the relative contribution of positive feedbacks and damping processes to the stability in historical simulations of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. When compared with CMIP3 models, the ENSO amplitudes and the ENSO stability as estimated by the BJ index in the CMIP5 models are more converged around the observed, estimated from the atmosphere and ocean reanalysis data sets. The reduced diversity among models in the simulated ENSO stability can be partly attributed to the reduced spread of the thermocline feedback and Ekman feedback terms among the models. However, a systematic bias persists from CMIP3 to CMIP5. In other words, the majority of the CMIP5 models analyzed in this study still underestimate the zonal advective feedback, thermocline feedback and thermodynamic damping terms, when compared with those estimated from reanalysis. This discrepancy turns out to be related with a cold tongue bias in coupled models that causes a weaker atmospheric thermodynamical response to sea surface temperature changes and a weaker oceanic response (zonal currents and zonal thermocline slope) to wind changes.  相似文献   
45.
This study examined the chemical speciation and mobility of As and heavy metals in a tailings impoundment in Samsanjeil mine located in Gosung, Korea, as well as the factors affecting them. XRD, SEM, and 5-step sequential extraction were used to examine the samples at two sampling sites (NN and SN sites). The pH of the tailings decreased with increasing depth at the NN site (from 7.2 to 2.8), whereas no significant differences were observed at the SN site (8.1–8.8). The samples at the SN site showed a larger amount of calcite than those at the NN site, indicating that calcite plays an important role buffering the pH in the study sites. Jarosite was found only at the lower part of the NN site, where calcite was not found. The mineralogical observation of jarosite and calcite was also confirmed by SEM. The concentrations of As and heavy metals in the tailings were as follows: Cu > As > Zn > > Pb > Co > Cr > Ni > Cd. The total concentrations of Ni, Zn, Co, and Cd were higher at the SN site than those at the NN site. On the other hand, the concentrations of As and Cr existing as oxyanions were higher at the NN site, which can be explained by the mobility changes of those elements affected by pH variations. At the NN site, the fractions of heavy metals bound to the Fe/Mn oxides, except for As and Cr, decreased, and Cu, Zn, and Co showed an increasing fraction of exchangeable metals with increasing depth. This suggests that the pH and resulting surface charge of minerals, such as goethite and jarosite, are the dominant factors controlling the chemical speciation of metals. These results highlight the importance of mineralogy in controlling the mobility and possible bioavailability of heavy metals in tailings.  相似文献   
46.
Titanium- and water-rich metamorphic olivine (Fo 86–88) is reported from partially dehydrated serpentinites from the Voltri complex, Ligurian Alps. The rocks are composed of mostly antigorite and olivine in addition to magnetite, chlorite, clinopyroxene and Ti-clinohumite. In situ secondary ion mass spectrometry (SIMS) data show that metamorphic olivine has very high and strongly correlated H2O (up to 0.7 wt%) and TiO2 contents (up to 0.85 wt%). Ti-rich olivine shows colourless to yellow pleochroism. Olivine associated with Ti-clinohumite contains low Ti, suggesting that Ti-rich olivine is not the breakdown product of Ti-clinohumite. Fourier transform infrared spectroscopy (FTIR) absorption spectra show peaks of serpentine, Ti-clinohumite and OH-related Si vacancies. Combining FTIR and SIMS data, we suggest the presence of clustered planar defects or nanoscale exsolutions of Ti-clinohumite in olivine. These defects or exsolutions contain more H2O (x ~ 0.1 in the formula 4Mg2SiO4·(1?x)Mg(OH,F)2·xTiO2) than Ti-clinohumite in the sample matrix (x = 0.34–0.46). In addition to TiO2 and H2O, secondary olivine contains significant Li (2–60 ppm), B (10–20 ppm), F (10–130 ppm) and Zr (0.9–2.1 ppm). It is enriched in 11B (δ11B = +17 to +23 ‰). Our data indicate that secondary olivine may play a significant role in transporting water, high-field strength and fluid-mobile elements into the deeper mantle as well as introduce significant B isotope anomalies. Release of hydrogen from H2O-rich olivine subducted into the deep mantle may result in strongly reduced mantle domains.  相似文献   
47.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
48.
In this paper we present the results of the past two years observations on the galactic microquasar LS I +61 303 with the Whipple 10 m gamma-ray telescope. The recent MAGIC detection of the source between 200 GeV and 4 TeV suggests that the source is periodic with very high energy (VHE) gamma-ray emission linked to its orbital cycle. The entire 50-hour data set obtained with Whipple from 2004 to 2006 was analyzed with no reliable detection resulting. The upper limits obtained in the 2005–2006 season covered several of the same epochs as the MAGIC Telescope detections, albeit with lower sensitivity. Upper limits are placed on emission during the orbital phases of 0→0.1 and 0.8→1, phases which are not included in the MAGIC data set.   相似文献   
49.
1IntroductionDuringthe past several years,concern hasincreasedover the potential pollution of watershed by estrogeniccompounds,including steroidal hormones fromhumanand ani mal sources.Effluents from wastewater treat-ment plants are sources of endocrine-d…  相似文献   
50.
Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号