首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37034篇
  免费   1088篇
  国内免费   919篇
测绘学   939篇
大气科学   2845篇
地球物理   7609篇
地质学   13556篇
海洋学   3330篇
天文学   8102篇
综合类   249篇
自然地理   2411篇
  2022年   272篇
  2021年   440篇
  2020年   425篇
  2019年   484篇
  2018年   908篇
  2017年   862篇
  2016年   1032篇
  2015年   703篇
  2014年   1032篇
  2013年   1867篇
  2012年   1339篇
  2011年   1776篇
  2010年   1562篇
  2009年   2017篇
  2008年   1697篇
  2007年   1769篇
  2006年   1699篇
  2005年   1224篇
  2004年   1141篇
  2003年   1036篇
  2002年   1000篇
  2001年   845篇
  2000年   826篇
  1999年   671篇
  1998年   715篇
  1997年   689篇
  1996年   570篇
  1995年   560篇
  1994年   479篇
  1993年   418篇
  1992年   416篇
  1991年   385篇
  1990年   455篇
  1989年   372篇
  1988年   341篇
  1987年   426篇
  1986年   340篇
  1985年   425篇
  1984年   522篇
  1983年   446篇
  1982年   444篇
  1981年   394篇
  1980年   414篇
  1979年   351篇
  1978年   340篇
  1977年   338篇
  1976年   307篇
  1975年   295篇
  1974年   308篇
  1973年   339篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This study examines the removal of dissolved metals during the oxidation and neutralization of five acid mine drainage (AMD) waters from La Zarza, Lomero, Esperanza, Corta Atalaya and Poderosa mines (Iberian Pyrite Belt, Huelva, Spain). These waters were selected to cover the spectrum of pH (2.2–3.5) and chemical composition (e.g., 319–2,103 mg/L Fe; 2.85–33.3 g/L SO4=) of the IPB mine waters. The experiments were conducted in the laboratory to simulate the geochemical evolution previously recognized in the field. This evolution includes two stages: (1) oxidation of dissolved Fe(II) followed by hydrolysis and precipitation of Fe(III), and (2) progressive pH increase during mixing with fresh waters. Fe(III) precipitates at pH < 3.5 (stages 1 and 2) in the form of schwertmannite, whereas Al precipitates during stage 2 at pH 5.0 in the form of several hydroxysulphates of variable composition (hydrobasaluminite, basaluminite, aluminite). During these stages, trace elements are totally or partially sorbed and/or coprecipitated at different rates depending basically on pH, as well as on the activity of the SO4= anion (which determines the speciation of metals). The general trend for the metals which are chiefly present as aqueous free cations (Pb2+, Zn2+, Cu2+, Cd2+, Mn2+, Co2+, Ni2+) is a progressive sorption at increasing pH. On the other hand, As and V (mainly present as anionic species) are completely scavenged during the oxidation stage at pH < 3.5. In waters with high activities (> 10−1) of the SO 4= ion, some elements like Al, Zn, Cd, Pb and U can also form anionic bisulphate complexes and be significantly sorbed at pH < 5. The removal rates at pH 7.0 range from around 100% for As, V, Cu and U, and 60–80% for Pb, to less than 20% for Zn, Co, Ni and Mn. These processes of metal removal represent a significant mechanism of natural attenuation in the IPB.  相似文献   
992.
993.
994.
A morphometric analysis was done to determine the drainage characteristics of Lules River basin using land-sat imageries and topographical maps. This catchment was divided into seven sub-basins for the analysis: Liquimayo, Hoyada, Ciénaga, De Las Tablas, Siambón, Potrerillo and San Javier. Yungas ecoregion covers almost all the watershed. The drainage patterns of the sub-basins are dendritic and parallel. The basin includes seventh order stream and lower streams order mostly dominate the basin. The development of stream segments is affected by slope and local relief. The mean bifurcation ratio indicates that the drainage pattern is not much influenced by geological structures. The shape parameters also reveal the elongation of the basin and sub-basins.  相似文献   
995.
New geochronological, isotopic and geochemical data for a spectacular swarm of deep crustal migmatitic mafic dikes offer important insight into processes operative during 1.9 Ga high pressure, high temperature metamorphism along the Snowbird tectonic zone in northern Saskatchewan. High-precision U–Pb zircon dates reveal anatexis of Chipman mafic dikes at 1,896.2 ± 0.3 Ma during syntectonic and synmetamorphic intrusion at conditions of 1.0–1.2 GPa, >750°C. U–Pb zircon dates of 1,894–1,891 Ma for cross-cutting pegmatites place a lower bound on major metamorphism and deformation at the currently exposed crustal levels. The persistence of elevated temperatures for ~14 m.y. following peak conditions is implied by younger U–Pb titanite dates, and by Sm–Nd whole rock isotopic data that suggest the derivation of the pegmatites by melting of a mafic source. Limited melting of the host felsic gneiss at 1.9 Ga despite high temperature is consistent with evidence for their previous dehydration by granulite facies metamorphism in the Archean. Spatial heterogeneity in patterns of mafic dike and tonalitic gneiss anatexis can be attributed to lateral peak temperature and compositional variability. We correlate 1,896 Ma Chipman mafic dike emplacement and metamorphism with substantial 1.9 Ga mafic magmatism over a minimum along-strike extent of 1,200 km of the Snowbird tectonic zone. This suggests a significant, continent-wide period of asthenospheric upwelling that induced incipient continental rifting. Extension was subsequently terminated by hinterland contraction associated with Trans-Hudson accretion and orogenesis. Little activity in the lower crust for ca. 650 m.y. prior to Proterozoic metamorphism and mafic magmatism implies an extended interval of cratonic stability that was disrupted at 1.9 Ga. This episode of destabilization contrasts with the record of long-term stability in most preserved cratons, and is important for understanding the lithospheric characteristics and tectonic circumstances that control the destruction or survival of continents.  相似文献   
996.
Early Proterozoic granitoids are of a limited occurrence in the Baikal fold area being confined here exclusively to an arcuate belt delineating the outer contour of Baikalides, where rocks of the Early Precambrian basement are exposed. Geochronological and geochemical study of the Kevakta granite massif and Nichatka complex showed that their origin was related with different stages of geological evolution of the Baikal fold area that progressed in diverse geodynamic environments. The Nichatka complex of syncollision granites was emplaced 1908 ± 5 Ma ago, when the Aldan-Olekma microplate collided with the Nechera terrane. Granites of the Kevakta massif (1846 ± 8 Ma) belong to the South Siberian postcollision magmatic belt that developed since ~1.9 Ga during successive accretion of microplates, continental blocks and island arcs to the Siberian craton. In age and other characteristics, these granites sharply differ from granitoids of the Chuya complex they have been formerly attributed to. Accordingly, it is suggested to divide the former association of granitoids into the Chuya complex proper of diorite-granodiorite association ~2.02 Ga old (Neymark et al., 1998) with geochemical characteristics of island-arc granitoids and the Chuya-Kodar complex of postcollision S-type granitoids 1.85 Ga old. The Early Proterozoic evolution of the Baikal fold area and junction zone with Aldan shield lasted about 170 m.y. that is comparable with development periods of analogous structures in other regions of the world.  相似文献   
997.
Geochronological database considered in the work and characterizing the Anabar collision system in the Northeast Siberian craton includes coordinated results of Sm-Nd and Rb-Sr dating of samples from crustal xenoliths in kimberlites, deep drill holes, and bedrock outcrops. As is inferred, collision developed in three stages dated at 2200–2100, 1940–1760, and 1710–1630 Ma. The age of 2000–1960 Ma is established for substratum of mafic rocks, which probably originated during the lower crust interaction with asthenosphere due to the local collapse of the collision prism. Comparison of Sm-Nd and Rb-Sr isochron dates shows that the system cooling from ≈700 to ≈300°C lasted approximately 300 m.y. with a substantial lag relative to collision metamorphism and granite formation. It is assumed that accretion of the Siberian craton resulted in formation of a giant collision mountainous structure of the Himalayan type that was eroded by 1.65 Ga ago, when accumulation of gently dipping Meso-to Neoproterozoic (Riphean) platform cover commenced.  相似文献   
998.
As indicated by mineralogical, geochemical, and structural-textural data, the base-metal skarn ore at the Partizansky deposit was formed during two stages (base-metal skarn and silver-sulfosalt), which were separated by intrusion of basaltic dikes. The bulk of the base-metal ore was deposited at the first stage, which comprises four sequential mineral assemblages: skarn-silicate, quartz-arsenopyrite, productive galena-sphalerite, and pyrrhotite-pyrite-chalcopyrite. The mineralization of the second stage was mainly confined to the upper margins of orebodies and pertains to the sulfosalt-galena-chalcopyrite assemblage, which was super-imposed on minerals of the first stage. The vertical mineralogical-geochemical zoning of the deposit is telescopic (related to the formation of the late silver-sulfosalt mineralization) and facies (typical of the early skarn and base-metal assemblages). The zoning of the skarn-silicate assemblage is expressed in the metasomatic replacement of skarn by quartz and calcite in the uppermost zone of skarn bodies and is emphasized by variation of the mineral composition throughout the skarn column, for instance, by the distinct updip enrichment of hedenbergite in manganese. The vertical zoning of the productive assemblage is emphasized by variations in the ratio of sphalerite to galena (the Pb/Zn ratio in the ore increases upward from 0.1 to 1), changes in mineral assemblages, and compositional variation of major ore-forming and minor minerals. In particular, galena from the deep levels is extremely enriched in Bi and Ag, while that from the upper levels is almost completely devoid of isomorphic admixtures. Fahlore displays updip enrichment in Sb, Ag, and Fe and corresponding depletion in Cu and Zn. The vertical chemical variations in fahlore are caused by the specific geological setting of ore deposition, the composition of the ore-forming solutions, and the physicochemical conditions of their transportation and ore deposition.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号