首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   7篇
  国内免费   5篇
测绘学   38篇
大气科学   25篇
地球物理   60篇
地质学   52篇
海洋学   28篇
天文学   10篇
综合类   1篇
自然地理   22篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   8篇
  2011年   14篇
  2010年   13篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   1篇
  1980年   4篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1959年   1篇
  1955年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
11.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
12.
The formation of an anisotropic landscape is influenced by natural and/or human processes, which can then be inferred on the basis of geometric indices. In this study, two minimal bounding rectangles in consideration of the principles of mechanics (i.e. minimal width bounding (MWB) box and moment bounding (MB) box) were introduced. Based on these boxes, four novel shape indices, namely MBLW (the length-to-width ratio of MB box), PAMBA (area ratio between patch and MB box), PPMBP (perimeter ratio between patch and MB box) and ODI (orientation difference index between MB and MWB boxes), were introduced to capture multiple aspects of landscape features including patch elongation, patch compactness, patch roughness and patch symmetry. Landscape pattern was, thus, quantified by considering both patch directionality and patch shape simultaneously, which is especially suitable for anisotropic landscape analysis. The effectiveness of the new indices were tested with real landscape data consisting of three kinds of saline soil patches (i.e. the elongated shaped slightly saline soil class, the circular or half-moon shaped moderately saline soil, and the large and complex severely saline soil patches). The resulting classification was found to be more accurate and robust than that based on traditional shape complexity indices.  相似文献   
13.
Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales.  相似文献   
14.
A critical component of flood protection in some coastal areas is expected to be the potential contribution of wetlands to the lowering of surges as they propagate inland from the coast. Consequently, an accurate method to quantify the effect of wetlands on coastal surge levels is required. The degree to which wetlands attenuate surge is the subject of debate and difficult to assess. The potential of wetlands to reduce storm surge has typically been expressed as a constant attenuation rate, but the relationship is much more complex. A numerical storm surge model was applied to assess the sensitivity of surge response to specified wetland loss. Results suggest that wetlands do have the potential to reduce surges but the magnitude of attenuation is dependent on the surrounding coastal landscape and the strength and duration of the storm forcing. Numerical models that simulate the relevant physical processes can provide valuable information on how to best integrate wetlands into coastal protection plans. However, while the model applied for this study has displayed skill in estimating surges over wetlands, the formulations are missing key processes and model advancements are necessary.  相似文献   
15.
The double torsion testing method has been used to determine catastrophic and subcritical crack propagation parameters for pre-cracked specimens of Westerly granite and Black gabbro under a number of environmental conditions.The critical stress intensity factor for catastrophic crack propagation (fracture toughness) of granite and gabbro has been measured at temperatures from 20 to 400°C, in a vacuum. At 20°C, the fracture toughness of Westerly granite was 1.79 ± 0.02 MPa · m12, and for two blocks of Black gabbro it was 3.03 ± 0.08 MPa · m12 and 2.71 ± 0.15 MPa ·m12, respectively. These values are very close to those reported by other investigators for tests conducted in air of ambient humidity at room temperature. For both rocks, fracture toughness at first increased slightly, and then decreased steadily on raising the temperature above ambient conditions. This behaviour is explained in terms of the density and distribution of thermally induced microcracks, as determined by quantitative optical microscopy.Subcritical crack growth behaviour has been studied at temperatures up to 300°C, and under water vapour at pressures of 0.6 to 15 kPa. Both the load relaxation and incremental constant displacement rate forms of the double torsion testing method were utilised to generate stress intensity factor/crack velocity diagrams. Crack growth was measured over the velocity range 5 × 10?3 to 10?7 m · s?1. Increasing both temperature and water vapour pressure resulted in substantially higher crack growth rates. The overall effect of raising the temperature over the range studied here (20–300°C) was to increase the crack growth rate in granite and gabbro by ~5 and 7 orders of magnitude, respectively, at constant stress intensity factor and vapour pressure of water. For both rocks, the slopes of stress intensity factor/crack velocity curves were sensitive to changes in both temperature and water vapour pressure at low values of the latter parameter. Slopes fell substantially on raising the water vapour pressure, but were relatively insensitive to changes in temperature at these higher pressures. No subcritical crack growth limit was encountered.Estimates of the uncertainty in our experimental data are given. From the results of multiple load relaxation experiments on Westerly granite specimens, we estimate the uncertainty in position of stress intensity factor/crack velocity curves along the stress intensity axis to be c. 10% of the fracture toughness, and the uncertainty in slope of such curves to be c. 12%.Problems associated with the extrapolation of our experimental data to regions of higher effective confining pressure in the Earth's crust are discussed.  相似文献   
16.
Abstract. This report summarizes results of monitoring programs for volatile synthetic organic chemicals (VOCs) in Nebraska's private and public water-supply wells conducted by two State agencies. Of 97 community water-supply systems sampled as of June 1984, 16.5 percent (16 systems) showed quantifiable levels of at least one VOC. Detectable amounts of one or more VOCs were measured in samples from 15.9 percent (10) of 63 private wells sampled in 1982. These percentages are consistent with results of other State and national surveys.  相似文献   
17.
The relative advantages of fluorescent dyes and Lycopodium spores as tracers are discussed. The major advantage of fluorescent dyes is that they may be detected quantitatively. Thus, in combination with discharge measurements, a dye mass balance can be prepared for tracer tests in karst conduits, which permits elucidation of the underground network. The advantages of this procedure are illustrated by comparison of the networks derived from non-quantitative (Lycopodium and dye) and quantitative (fluorescent dye) tracer methods in the Traligill Basin, Scotland. These tests also suggest that Lycopodium does not give a true indication of travel time, due to sedimentation underground. This could also cause contamination problems in later tests. For non-quantitative tracer tests, sensitive methods are necessary if incorrect inferences on conduit networks are to be avoided. In general, however, quantitative tests give much less ambiguous results, and are therefore to be preferred.  相似文献   
18.
A three-dimensional numerical model has been used to assess the effects of vertical stability and wind shear on the nature and form of meso-scale cellular convection (MCC). The model was shown to be capable of simulating a real occasion of MCC before it was used in idealised cases. These cases revealed different regimes in MCC: open cells, longitudinal bands and closed cells/transverse bands. Open cells were favoured by the existence of instability in the surface layer and a lack of wind shear in the Ekman layer. Longitudinal bands were favoured by similar conditions in the surface layer plus wind shear in the Ekman layer. A near-neutral surface layer favoured the occurrence of closed cells/transverse bands. The depth of convection in the longitudinal bands was a function of the stability in both the surface and Ekman layers and of the wind shear in the Ekman layer. The regimes are related to the instability and shear through bulk Richardson numbers in the surface and Ekman layers.  相似文献   
19.
It is well known that terrain may vary markedly over small areas and that statistics used to characterise spatial variation in terrain may be valid only over small areas. In geostatistical terminology, a non-stationary approach may be considered more appropriate than a stationary approach. In many applications, local variation is not accounted for sufficiently. This paper assesses potential benefits in using non-stationary geostatistical approaches for interpolation and for the assessment of uncertainty in predictions with implications for sampling design. Two main non-stationary approaches are employed in this paper dealing with (1) change in the mean and (2) change in the variogram across the region of interest. The relevant approaches are (1) kriging with a trend model (KT) using the variogram of residuals from local drift and (2) locally-adaptive variogram KT, both applied to a sampled photogrammetrically derived digital terrain model (DTM). The fractal dimension estimated locally from the double-log variogram is also mapped to illustrate how spatial variation changes across the data set. It is demonstrated that estimation of the variogram of residuals from local drift is worthwhile in this case for the characterisation of spatial variation. In addition, KT is shown to be useful for the assessment of uncertainty in predictions. This is shown to be true even when the sample grid is dense as is usually the case for remotely-sensed data. In addition, both ordinary kriging (OK) and KT are shown to provide more accurate predictions than inverse distance weighted (IDW) interpolation, used for comparative purposes.  相似文献   
20.
SOURCE RADIATION AND RESPONSES OF WAVE PROPAGATION   总被引:2,自引:0,他引:2  
Recordings of seismic waves propagating from earthquake source to a station at the earth's surface are a system response function.The convolution operator in time domain can be simplified as a multiplication operator in frequency domain.We discuss in frequency domain the separation of source,path and site effects for global scaling of earthquake source radiation.Also discussed are source scaling model,faulting mechanism,and the H/V inversion problems with crustal and near surface structures.Gross features of apparent source spectra appear to be not much region-dependent although there may be difference between tectonic styles within a region of tectonic mixture for which we need further study as data accumulate.Vertical spectra may be a better approach to approximate source radiation,as it has less crustal amplification effects than horizontal spectra.The H/V ratio is evidently a comprehensive indicator of amplification effects from near surface to deep structure.This gives it potential as an inversion tool to deduce site crustal structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号