首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   20篇
地质学   25篇
海洋学   34篇
天文学   31篇
自然地理   12篇
  2017年   4篇
  2016年   2篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   7篇
  2009年   5篇
  2008年   10篇
  2007年   7篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1934年   2篇
排序方式: 共有138条查询结果,搜索用时 409 毫秒
71.
72.
73.
The Norwegian Channel between Skagerrak, in the southeast, and the continental margin of the northern North Sea, in the northwest, is the result of processes related to repeated ice stream activity through the last 1.1 m yr. In such periods the Skagerrak Trough (700 m deep) has acted as a confluence area for glacial ice from southeastern Norway, southern Sweden and parts of the Baltic. Possibly related to the threshold in the Norwegian Channel off Jæren (250 m deep), the ice stream, on a number of occasions over the last 400 ka, inundated the coastal lowlands and left an imprint of NW‐oriented ice directional features (drumlins, stone orientations in tills and striations). Marine interstadial sediments found up to 200 m a.s.l. on Jæren have been suggested to reflect glacial isostasy related to the Norwegian Channel Ice Stream (NCIS). In the channel itself, the ice stream activity is evidenced by mega‐scale glacial lineations on till surfaces. As a result of subsidence, the most complete sedimentary records of early phases of the NCIS are preserved close to the continental margin in the North Sea Fan region. The strongest evidence for ice stream erosion during the last glacial phase is found in the Skagerrak. On the continental slope the ice stream activity is evidenced by the large North Sea Fan, which is mainly a result of deposition of glacial‐fed debris flows. Northwards of the North Sea Fan, rapid deposition of meltwater plume deposits, possibly related to the NCIS, is detected as far north as the Vøring Plateau. The NCIS system offers a unique possibility to study ice stream related processes and the impact the ice stream development had on open ocean sedimentation and circulation.  相似文献   
74.
Sedimentological, pedological and palynological evidence reveal radically increasing onshore humidity during the Rhaetian marine invasion of central Europe along the north-eastern margin of the Central European Basin (southern Sweden). Pre-Rhaetian aridity favoured the formation of Carnian redbeds with calcrete, which were succeeded by Norian hematite-cemented conglomerates, arkoses, arkosic wackestones, and smectititic mudstones deposited on braidplains and in lakes. Superimposed autochthonous coals and gleysols indicate the Rhaetian onset of year-round humidity. Chemically mature sandstones, kaolinitic mudstones and luvisols also formed at this time, influenced by a permanent vegetation cover which lowered soil pH and strongly intensified chemical weathering. The Rhaetian deposits accumulated in floodplain lakes repeatedly subjected to sediment infill, plant colonization and palaeosol development. The humidity shift resembles that contemporaneously recorded in the North Sea region.  相似文献   
75.
That the redshifts for galaxies in the local supercluster are quantizedwas recently confirmedby Guthrie and Napier(A&Amp;Amp;A310 (1996) 353). These redshifts are here proposed to be due to stimulatedStokes Raman processes in intergalactic matter in the form of Rydberg Matter (RM). Rydberg Matteris an electronically excited material, as demonstrated by its use as laser medium in a thermally excitedultra-broadband tunable IR laser (Chem. Phys. Lett. 376 (2003) 812). Its existence in interstellar andintergalactic space is demonstrated by several observational results, notably the unidentified IR bands,that agree well with the emission from Rydberg Matter. A stimulated Raman process will allow theH I 21 cm radiation to proceed without deflection, in agreement with observation. Such redshiftswill be additive during the passage through space. The process in Rydberg Matter here proposed togive rise to the Stokes Raman process is excitation of electronic translational modes in the planarclusters forming the matter. The specific cluster sizes found in laboratory experiments give rise toa few differently sized redshift quanta, which is in good agreement with the observed quanta. Anexcitation level (principal quantum number) of Rydberg Matter in intergalactic space between 175and 200 gives the correct size of the redshift quanta.  相似文献   
76.
Based on seismic profiles, multibeam bathymetry and sediment cores, an improved understanding of the deglaciation/postglacial history of the southern part of the Norwegian Channel has been obtained. The Norwegian Channel Ice Stream started to recede from the shelf edge ca. 15.5 ka BP (14C ages are used throughout). Approximately 500–1000 years later the ice margin was located east of the deep Skagerrak trough. At that time, the Norwegian Channel off southern Norway had become a large fjord-like embayment, surrounded by the grounded ice sheet along the northern slope and possibly stagnant ice remnants at the southern flank. The Norwegian Channel off southern Norway has been the main sediment trap of the North Sea, and south of Egersund more than 200 m of sediments have been deposited since the start of the deglaciation. Five seismic units are mapped. The oldest unit E occurs in some of the deepest troughs, and was deposited immediately after the ice became buoyant. Unit D is acoustically massive and comprises mass-movement deposits in eastern Skagerrak and south of Egersund. Unit C (in the channel southwest of Lista/Egersund) is interpreted to comprise mainly bottom current deposits derived from palaeo-rivers, e.g. Elben. During deposition of unit C (ca. 14.5–13 ka BP), there was limited inflow of Atlantic water. A change in depositional environment at ca. 13 ka BP is related to an increased inflow of saline water and more open hydrographic circulation. Widely distributed, acoustically stratified clays of unit B were deposited ca. 13–10 ka BP. The Holocene Unit A shows a depositional pattern broadly similar to that of unit B.  相似文献   
77.
The LOMROG 2007 expedition targeted the previously unexplored southern part of the Lomonosov Ridge north of Greenland together with a section from the Morris Jesup Rise to Gakkel Ridge. The oceanographic data show that Canadian Basin Deep Water (CBDW) passes the Lomonosov Ridge in the area of the Intra Basin close to the North Pole and then continues along the ridge towards Greenland and further along its northernmost continental slope. The CBDW is clearly evident as a salinity maximum and oxygen minimum at a depth of about 2000 m. The cross-slope sections at the Amundsen Basin side of the Lomonosov Ridge and further south at the Morris Jesup Rise show a sharp frontal structure higher up in the water column between Makarov Basin water and Amundsen Basin water. The frontal structure continues upward into the Atlantic Water up to a depth of about 300 m. The observed water mass division at levels well above the ridge crest indicates a strong topographic steering of the flow and that different water masses tend to pass the ridge guided by ridge-crossing isobaths at local topographic heights and depressions. A rough scaling analysis shows that the extremely steep and sharply turning bathymetry of the Morris Jesup Rise may force the boundary current to separate and generate deep eddies.  相似文献   
78.
Patterns in community structure and functioning of motile epibenthic fauna were investigated in shallow (0–1 m) sediment habitats along the Skagerrak–Baltic estuarine gradient (salinity range from 4 to 34). The study area was divided into five regions, reflecting different sea-basins along the 1260 km coastline, and fauna was collected at six sites within each region. Ten replicate samples of motile epibenthic fauna were taken randomly at each site with a portable drop trap (bottom area 1 m2) in June and September in 2004.  相似文献   
79.
The postglacial tree line and climate history in the Swedish Scandes have been inferred from megafossil tree remains. Investigated species are mountain birch (Betula pubescens ssp. czerepanovii), Scots pine (Pinus sylvestris) and grey alder (Alnus incana). Betula and Pinus first appeared on early deglaciated nunataks during the Lateglacial. Their tree lines peaked between 9600 and 9000 cal. a BP, almost 600 m higher than present‐day elevations. This implies (adjusted for land uplift) that early Holocene summer temperatures may have been 2.3°C above modern ones. Elevational tree line retreat characterized the Holocene tree line evolution. For short periods, excursions from this trend have occurred. Between c. 12 000 and 10 000 cal. a BP, a pine‐dominated subalpine belt prevailed. A first major episode of descent occurred c. 8200 cal. a BP, possibly forced by cooling and an associated shift to a deeper and more persistent snow pack. Thereafter, the subalpine birch forest belt gradually evolved at the expense of the prior pine‐dominated tree line ecotone. A second episode of pine descent took place c. 4800 cal. a BP. Historical tree line positions are viewed in relation to early 21st century equivalents, and indicate that tree line elevations attained during the past century and in association with modern climate warming are highly unusual, but not unique, phenomena from the perspective of the past 4800 years. Prior to that, the pine tree line (and summer temperatures) was consistently higher than present, as it was also during the Roman and Medieval periods, c. 1900 and 1000 cal. a BP, respectively.  相似文献   
80.
Recent subsurface mapping of parts of the Greenland Inland Ice margin in the region of Jakobshavn Isbræ indicates that the fjord system in the period of at least 2700–4700 calendar yr B.P. was more ice free than at present, and that the front of the glacier was at least 15 km behind the present position. The 14C-dating of subfossils brought to the present ice margin fit with the climatic records from ice cores and confirm the favourable conditions for Greenland's first settlers, the Sarqaq people, who arrived in the region about 400 yr ago to find hunting grounds 10–20% larger than the present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号