首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   2篇
地质学   8篇
海洋学   19篇
天文学   4篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2016年   13篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  1993年   1篇
排序方式: 共有35条查询结果,搜索用时 156 毫秒
31.
The Incremental Differential Quadrature Method (IDQM) was applied to a tidal and surge model of the Bristol Channel, UK. The method is considered as an alternative new numerical technique in the field of marine hydraulics and its performance was examined through this case study. For validation of the simulated results, tide gauge data along the Bristol Channel was used. Another well known 1D model (MIKE11) and a quasi-3D model (POLCOMS) provided more insight into the flow pattern of the estuary and additional validation data. Similar to MIKE11, IDQM is unconditionally stable and so time steps of around 45 min achieved good results for the Bristol Channel, whereas for methods which are restricted to the CFL criterion (e.g. explicit finite differencing schemes), the time step is limited to around 3 min. Since there is no stability constraint in IDQM, the time step must be selected with reference to accuracy rather than stability. The usefulness of IDQM was also demonstrated by using a small number of grid points (11 along the 110 km length of the Bristol Channel) to produce accurate results. Based on the results of this case study, it is concluded that IDQM can be successfully implemented for 1D modelling of tidal elevations and surges in non-prismatic irregular channels.  相似文献   
32.
Riverine influences on nearshore oceanic habitats often have detrimental consequences leading to algal blooms and hypoxia. In oligo- to mesotrophic systems, however, nutrient delivery via rivers may stimulate production and even be a vital source of nutrients, as may nutrient supplements from upwelling. We investigated the nutrient content (C, N, P) and stoichiometry of sediment, and several pelagic, benthopelagic and benthic species in the KwaZulu-Natal (KZN) Bight, a narrow shelf area on the south-east coast of South Africa, bordering the Agulhas Current. Three suggested nutrient sources to the bight are the Thukela River in the central region of the bight, upwelling in the northern part and a semi-permanent eddy (Durban Eddy) in the southern part. Elemental content of the various groups studied showed significantly higher values for most groups at the site near the Thukela River. C:P and N:P were highest in the southern part of the bight, and lowest near the Thukela Mouth or at Richards Bay in the north, indicating the latter were the P-richer sites. Sediment organic matter showed lowest elemental content, as expected, and zooplankton stoichiometry was highest compared to all other biotic groups. Environmental heterogeneity played a greater role in organismal C, N and P content and stoichiometry compared to phylogeny, with the exception of the differences in C:P and N:P of zooplankton. From this bight-wide study, the higher elemental content and lower ratios at the Thukela Mouth site supported previous findings of the importance of coastal nutrient sources to the bight ecosystem. Reductions in river flow for water use in the catchment areas may therefore have negative consequences for the productivity of the entire ecosystem.  相似文献   
33.
Channel constrictions within an estuary can influence overall estuary-sea exchange of salt or suspended/dissolved material. The exchange is modulated by turbulent mixing through its effect on density stratification. Here we quantify turbulent mixing in Hikapu Reach, an estuarine channel in the Marlborough Sounds, New Zealand. The focus is on a period of relatively low freshwater input but where density stratification still persists throughout the tidal cycle, although the strength of stratification and its vertical structure vary substantially. The density stratification increases through the ebb tide, and decreases through the flood tide. During the spring tides observed here, ebb tidal flow speeds reached 0.7?m?s?1 and the buoyancy frequency squared was in the range 10?5 to 10?3?s?2. Turbulence parameters were estimated using both shear microstructure and velocimeter-derived inertial dissipation which compared favourably. The rate of dissipation of turbulent kinetic energy reached 1?×?10?6?m2?s?3 late in the ebb tide, and estimates of the gradient Richardson number (the ratio of stability to shear) fell as low as 0.1 (i.e. unstable) although the results show that bottom-boundary driven turbulence can dominate for periods. The implication, based on scaling, is that the mixing within the channel does not homogenise the water column within a tidal cycle. Scaling, developed to characterise the tidal advection relative to the channel length, shows how riverine-driven buoyancy fluxes can pass through the tidal channel section and the stratification can remain partially intact.  相似文献   
34.
We present an analysis of the factors which control the seasonal variations of the clear-sky greenhouse effect, based on satellite observations and radiative transfer simulations. The satellite observations include the radiation budget at the top of the atmosphere from the Earth Radiation Budget Experiment and the total column moisture content derived from the Special Sensor Microwave/Imager. The simulations were performed with the SAMSON system described in an earlier paper, using atmospheric temperatures and humidities from operational analyses produced by the European Centre for Medium Range Weather Forecasts. At low latitudes, the magnitude of the clear-sky greenhouse effect is dominated by the strong thermodynamic link between the total column moisture content of the atmosphere and sea surface temperatures, with minimal seasonal variations. In contrast, at middle to high latitudes there are strong seasonal variations, the clear-sky greenhouse effect being largest in winter and smallest in summer. These variations cannot be explained by the seasonal cycle in the total column moisture content, as this is largest in summer and smallest in winter. The variations are controlled instead by the seasonal changes in atmospheric temperatures. The colder atmosphere in winter enhances the temperature differential between the atmosphere and the sea surface, leading to a larger greenhouse effect despite the lower moisture contents. The magnitude of the clear-sky greenhouse effect is thus controlled by atmospheric humidity at low latitudes, but by atmospheric temperature at middle and high latitudes. These controls are illustrated by results from sensitivity experiments with SAMSON and are interpreted in terms of a simple model.  相似文献   
35.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号