首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   46篇
  国内免费   2篇
测绘学   14篇
大气科学   55篇
地球物理   173篇
地质学   258篇
海洋学   35篇
天文学   106篇
综合类   3篇
自然地理   33篇
  2024年   3篇
  2023年   2篇
  2022年   3篇
  2021年   13篇
  2020年   12篇
  2019年   8篇
  2018年   33篇
  2017年   38篇
  2016年   42篇
  2015年   45篇
  2014年   52篇
  2013年   49篇
  2012年   47篇
  2011年   38篇
  2010年   33篇
  2009年   30篇
  2008年   27篇
  2007年   25篇
  2006年   29篇
  2005年   18篇
  2004年   17篇
  2003年   9篇
  2002年   16篇
  2001年   8篇
  2000年   6篇
  1999年   9篇
  1998年   9篇
  1997年   11篇
  1996年   2篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有677条查询结果,搜索用时 31 毫秒
101.
Manta rays inhabit tropical, subtropical and temperate waters. Aggregation sites of manta rays have been recognized worldwide, but the reasons for this behavior are still poorly understood. This study describes environmental factors influencing aggregation sites of the giant manta ray (Manta birostris) off the northeastern coast of the Yucatan Peninsula. Observations of manta rays were obtained from scientific surveys conducted during 2006–2011. Environmental data were obtained from satellite imagery. The maximum entropy (Maxent) method for habitat modeling was used to determine the effects of environmental conditions on the species and predict suitable habitat for manta rays in this region. Primary productivity and distance to the coast were the most influential variables, suggesting that aggregation occurs in highly productive coastal waters. The distribution of manta rays predicted by the Maxent model showed that the most suitable habitat within the study area is located off the northeastern coast of the Yucatán Peninsula, more precisely, northeast of Isla Holbox and northwest of Isla Contoy. Seasonal patterns of distribution suggest that the most suitable conditions are present from July through September.  相似文献   
102.
International Journal of Earth Sciences - The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in...  相似文献   
103.
To investigate to what extent episodic physical processes regulate nutrient availability and phytoplankton assemblages of the Mahon estuary (Minorca Island), we carried out an intensive field study during 2010–2011. During the study period, environmental conditions spanned from intense stratification to a continuous mixing and from lack of riverine inflow to intense runoff. Our data reveals a sequence of biogeochemical states of the estuary that result from the interplay between runoff, other non-periodic forcings (winds, sea level oscillations), and variations in water renewal. Seasonal runoff was revealed as a major driver of winter circulation and of the influx of inorganic nutrients, in particular nitrate. However, because of the combination between runoff and flushing time, the effects of floodwater events on phytoplankton are short-lived (days). Conversely, during summer, when freshwater influx declines, water renewal relies on pulsed atmospheric forcing that may be of local or remote origin. As depicted from the low nitrate concentrations (<1 μM) and enhanced ammonium (>1 μM), this change in circulation and external loads carries nutrient assimilation within the estuary head and forces the use of remnant nutrients through regenerating pathways to sustain an enhanced phytoplankton biomass at the lower estuary. Episodic variability represented between 52 and 65% of the annual chlorophyll variance. Despite the fact that episodic pulses represented intense departures from base biogeochemical state of the estuary, at time scale larger than weeks, the phytoplankton community composition and dynamics was largely regulated by the integrated effect of these episodes and other environmental drivers associated with seasonality rather than by individual storm events only. Our results suggest that even though the system presents good recovery capacity to individual storm episodes, it may be more vulnerable to increased nutrient fluxes during summer, as well as to changes in episode timing and frequency.  相似文献   
104.
This review carries out a comparative study of advanced technologies to design, upgrade and rehabilitate wastewater treatment plants. The study analyzed the relevant researches in the last years about the moving bed biofilm reactor process with only attached biomass and with hybrid biomass, which combined attached and suspended growth; both could be coupled with a secondary settling tank or microfiltration/ultrafiltration membrane as a separation system. The physical process of membrane separation improved the organic matter and NH4 +-N removal efficiencies compared with the settling tank. In particular, the pure moving bed biofilm reactor–membrane bioreactor showed average chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen removal efficiencies of 88.32, 90.84 and 60.17%, respectively, and the hybrid moving bed biofilm reactor–membrane bioreactor had mean chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen reduction percentages of 91.18, 97.34 and 68.71%, respectively. Moreover, the hybrid moving bed biofilm reactor–membrane bioreactor showed the best efficiency regarding organic matter removal for low hydraulic retention times, so this system would enable the rehabilitation of activated sludge plants and membrane bioreactors that did not comply with legislation regarding organic matter removal. As the pure moving bed biofilm reactor–membrane bioreactor performed better than the hybrid moving bed biofilm reactor–membrane bioreactor concerning the total nitrogen removal under low hydraulic retention times, this system could be used to adapt wastewater treatment plants whose effluent was flowed into sensitive zones where total nitrogen concentration was restricted. This technology has been reliably used to upgrade overloaded existing conventional activated sludge plants, to treat wastewater coming from textile, petrochemical, pharmaceutical, paper mill or hospital effluents, to treat wastewater containing recalcitrant compounds efficiently, and to treat wastewater with high salinity and/or low and high temperatures.  相似文献   
105.
106.
107.
108.
109.
Large‐scale testing and qualification of structural systems and their components is crucial for the development of earthquake engineering knowledge and practice. However, laboratory capacity is often limited when attempting larger experiments due to the sheer size of the structures involved. To overcome traditional laboratory capacity limitations, we present a new earthquake engineering testing method: real‐time distributed hybrid testing. Extending current approaches, the technique enables geographically distributed scientific equipment including controllers, dynamic actuators and sensors to be coupled across the Internet in real‐time. As a result, hybrid structural emulations consisting of physical and numerical substructures need no longer be limited to a single laboratory. Larger experiments may distribute substructures across laboratories located in different cities whilst maintaining correct dynamic coupling, required to accurately capture physical rate effects. The various aspects of the distributed testing environment have been considered. In particular, to ensure accurate control across an environment not designed for real‐time testing, new higher level control protocols are introduced acting over an optimised communication system. New large time‐step prediction algorithms are used, capable of overcoming both local actuation and distributed system delays. An overview of the architecture and algorithms developed is presented together with results demonstrating a number of current capabilities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
110.
The impossibility of observing magma migration inside the crust obliges us to rely on geophysical data and mathematical modelling to interpret precursors and to forecast volcanic eruptions. Of the geophysical signals that may be recorded before and during an eruption, deformation and seismicity are two of the most relevant as they are directly related to its dynamic. The final phase of the unrest episode that preceded the 2011–2012 eruption on El Hierro (Canary Islands) was characterized by local and accelerated deformation and seismic energy release indicating an increasing fracturing and a migration of the magma. Application of time varying fractal analysis to the seismic data and the characterization of the seismicity pattern and the strain and the stress rates allow us to identify different stages in the source mechanism and to infer the geometry of the path used by the magma and associated fluids to reach the Earth’s surface. The results obtained illustrate the relevance of such studies to understanding volcanic unrest and the causes that govern the initiation of volcanic eruptions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号