首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   7篇
测绘学   1篇
大气科学   3篇
地球物理   22篇
地质学   17篇
海洋学   23篇
天文学   31篇
综合类   1篇
自然地理   9篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
101.
A polychaete, Capitella sp. I has been shown to degrade organics actively in organically enriched sediment below fish farms. Our aim of the present study is to enhance the biological treatment of sediment by co-inoculation of Capitella sp. I with bacterial isolates that possess high degrading potential for organic matter. We isolated a total of 200 bacterial strains from fecal pellets, burrow lining, worm body, and sediment, and selected six of them for the degradation experiments in the sediment microcosms. With two out of the six isolates, tentatively identified as Vibrio sp. and Vibrio cyclitrophicus by 16SrDNA sequence, we found the TOC reduction rate was stimulated in sediment co-inoculated with the worms and each of the bacteria. In contrast, this was not observed in sediments inoculated only with the worms or the bacterium. These results strongly suggest that co-inoculation of Capitella sp. I with bacteria improves biodegradation.  相似文献   
102.
Abstract— Ice thickness estimates and impactor dynamics indicate that some impacts must breach Europa's ice crust; and outcomes of impact experiments using ice‐over‐water targets range from simple craters to chaos‐like destroyed zones, depending on impact energy and ice competence. First‐order impacts‐into thick ice or at low impact energy‐produce craters. Second‐order impacts punch through the ice, making holes that resemble raft‐free chaos areas. Third‐order impacts‐into thinnest ice or at highest energy‐produce large irregular raft‐filled zones similar to platy chaos. Other evidence for an impact origin for chaos areas comes from the size‐frequency distribution of chaos+craters on Europa, which matches the impact production functions of Ganymede and Callisto; and from small craters around the large chaos area Thera Macula, which decrease in average size and density per unit area as a function of distance from Thera's center. There are no tiny chaos areas and no craters >50 km diameter. This suggests that small impactors never penetrate, whereas large ones (ÜberPenetrators: >2.5 km diameter at average impact velocity) always do. Existence of both craters and chaos areas in the size range 2–40 km diameter points to spatial/temporal variation in crust thickness. But in this size range, craters are progressively outnumbered by chaos areas at larger diameters, suggesting that probability of penetration increases with increasing scale of impact. If chaos areas do represent impact sites, then Europa's surface is older than previously thought. The recalculated resurfacing age is 480 (‐302/+960) Ma: greater than prior estimates, but still very young by solar system standards.  相似文献   
103.
Polycyclic Aromatic Hydrocarbons (PAHs) are one of the components found in oil and are of interest because some are toxic. We studied the environmental fate of PAHs and the effects of chemical dispersants using experimental 500 l mesocosm tanks that mimic natural ecosystems. The tanks were filled with seawater spiked with the water-soluble fraction of heavy residual oil. Water samples and settling particles in the tanks were collected periodically and 38 PAH compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Low molecular weight (LMW) PAHs with less than three benzene rings disappeared rapidly, mostly within 2 days. On the other hand, high molecular weight (HMW) PAHs with more than four benzene rings remained in the water column for a longer time, up to 9 days. Also, significant portions (10-94%) of HMW PAHs settled to the bottom and were caught in the sediment trap. The addition of chemical dispersant accelerated dissolution and biodegradation of PAHs, especially HMW PAHs. The dispersant amplified the amounts of PAHs found in the water column. The amplification was the greater for the more hydrophobic PAHs, with an enrichment factor of up to six times. The increased PAHs resulting from dispersant use overwhelmed the normal degradation and, as a result, higher concentrations of PAHs were observed in water column throughout the experimental period. We conclude that the addition of the dispersant could increase the concentration of water column PAHs and thus increase the exposure and potential toxicity for organisms in the natural environment. By making more hydrocarbon material available to the water column, the application of dispersant reduced the settling of PAHs. For the tank with dispersant, only 6% of chrysene initially introduced was detected in the sediment trap whereas 70% was found in the trap in the tank without dispersant.  相似文献   
104.
105.
106.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
107.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号