首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   10篇
  国内免费   1篇
测绘学   3篇
大气科学   10篇
地球物理   66篇
地质学   84篇
海洋学   20篇
天文学   26篇
自然地理   16篇
  2020年   10篇
  2019年   3篇
  2018年   9篇
  2017年   10篇
  2016年   13篇
  2015年   7篇
  2014年   9篇
  2013年   4篇
  2012年   13篇
  2011年   7篇
  2010年   11篇
  2009年   9篇
  2008年   11篇
  2007年   13篇
  2006年   5篇
  2005年   9篇
  2004年   3篇
  2003年   8篇
  2002年   11篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有225条查询结果,搜索用时 17 毫秒
141.
Global and Local Multiscale Analysis of Magnetic Susceptibility Data   总被引:3,自引:0,他引:3  
Geophysical well-logs often show a complex behavior which seems to suggest a multifractal nature. Multifractals are highly intermittent signals, with distinct active bursts and passive regions which cannot be satisfactorily characterized in terms of just second-order statistics. They need a higher-order statistical analysis. In contrast with monofractals which have a homogeneous scaling, multifractals may include singularities of many types. Here we describe how a multiscale analysis can be used to describe the magnetic susceptibility data scaling properties for a deep well (KTB, Germany), down to about 9000 m. A multiscale analysis describes the local and global singular behavior of measures or distributions in a statistical fashion. The global analysis allows the estimation of the global repartition of the various Holder exponents. As such, it leads to the definition of a spectrum, D(), called the singularity spectrum. The local analysis is related to the possibility of estimating the Lipschitz regularity locally, i.e., at each point of the support of a multifractal signal. The application of both approaches to the KTB magnetic susceptibility data shows a meaningful correlation between the sequence of Holder exponents vs. depth and the lithological units. The Holder exponents reach the highest values for gneiss units, intermediate ones for amphibolite units and the lowest values for variegated units. Faults are found to correspond to changes for H also when they are of intra-lithological type.  相似文献   
142.
A geological-geophysical expedition (Ev-K2–CNR 1988) visited the area from West Kun Lun to Karakorum (K2–Gasherbrum). Seven tectonic units including sedimentary, magmatic and metamorphic rocks were distinguished in this area; the northernmost are suggested to belong to the Kun Lun and Qiangtang Microplates. The sedimentary sequence of Shaksgam is proved to extend from the Permian to the Jurassic, with Carboniferous and Cretaceous ages more doubtful. This sequence shows intermediate affinities between the Karakorum and the Qiangtang. The two southernmost units belong to the Karakorum Microplate. The Karakorum Fault Zone comprises a complex pattern of faults and thrusts, with brittle deformation and uplifting of granitoid bodies.  相似文献   
143.
We present a method for calibrating every instrument working with magneto-optical filter (MOF) technology, in order to take into account the effect in the observations due to the aging of the vapour cells. The method allows the evaluation of some characteristics of the transmission profile by modelling the blue and/or the red line intensity images acquired with the MOF system. In particular, it reveals the presence of unwanted spurious transmissions and prevents cross-talk between the intensity and velocity fluctuations. The method also gives information about the position of the “working point” of the instrument, i.e. the average wavelength position of its transmission profile, which is necessary for estimating the right solar atmospheric layer observed by the MOF. This analysis is powerful and fast: applied before every observing campaign, it enables setting Q the most suitable value for the cell temperature, which is one of the parameters that controls the MOF transmission profile.  相似文献   
144.
Forward Looking Infrared Radiometer (FLIR) cameras offer a unique view of explosive volcanism by providing an image of calibrated temperatures. In this study, 344 eruptive events at Stromboli volcano, Italy, were imaged in 2001–2004 with a FLIR camera operating at up to 30 Hz. The FLIR was effective at revealing both ash plumes and coarse ballistic scoria, and a wide range of eruption styles was recorded. Eruptions at Stromboli can generally be classified into two groups: Type 1 eruptions, which are dominated by coarse ballistic particles, and Type 2 eruptions, which consist of an optically-thick, ash-rich plume, with (Type 2a) or without (Type 2b) large numbers of ballistic particles. Furthermore, Type 2a plumes exhibited gas thrust velocities (>15 m s−1) while Type 2b plumes were limited to buoyant velocities (<15 m s−1) above the crater rim. A given vent would normally maintain a particular gross eruption style (Type 1 vs. 2) for days to weeks, indicating stability of the uppermost conduit on these timescales. Velocities at the crater rim had a range of 3–101 m s−1, with an overall mean value of 24 m s−1. Mean crater rim velocities by eruption style were: Type 1 = 34 m s−1, Type 2a = 31 m s−1, Type 2b = 7 m s−1. Eruption durations had a range of 6–41 s, with a mean of 15 s, similar among eruption styles. The ash in Type 2 eruptions originates from either backfilled material (crater wall slumping or ejecta rollback) or rheological changes in the uppermost magma column. Type 2a and 2b behaviors are shown to be a function of the overpressure of the bursting slug. In general, our imaging data support a broadening of the current paradigm for strombolian behavior, incorporating an uppermost conduit that can be more variable than is commonly considered.  相似文献   
145.
A safe, easy and rapid method to calculate lava effusion rates using hand-held thermal image data was developed during June 2003 at Stromboli Volcano (Italy). We used a Forward Looking Infrared Radiometer (FLIR) to obtain images of the active lava flow field on a daily basis between May 31 and June 16, 2003. During this time the flow field geometry and size (where flows typically a few hundred meters long were emplaced on a steep slope) meant that near-vertical images of the whole flow field could be captured in a single image obtained from a helicopter hovering, at an altitude of 750 m and ∼1 km off shore. We used these images to adapt a thermally based effusion rate method, previously applied to low and high spatial resolution satellite data, to allow automated extraction of effusion rates from the hand-held thermal infrared imagery. A comparison between a thermally-derived (0.23–0.87 m3 s−1) and dimensionally-derived effusion rate (0.56 m3 s−1) showed that the thermally-derived range was centered on the expected value. Over the measurement period, the mean effusion rate was 0.38±0.25 m3 s−1, which is similar to that obtained during the 1985–86 effusive eruption and the time-averaged supply rate calculated for normal (non-effusive) Strombolian activity. A short effusive pulse, reaching a peak of ∼1.2 m3 s−1, was recorded on June 3, 2003. One explanation of such a peak would be an increase in driving pressure due to an increase in the height of the magma contained in the central column. We estimate that this pulse would require the magma column to attain a height of ∼190 m above the effusive vent, which is approximately the elevation difference between the vent and the floor of the NE crater. Our approach gives an easy-to-apply method that has the potential to provide effusion rate time series with a high temporal resolution.Editorial responsibility: M. Carroll  相似文献   
146.
Daily meteorological observations have been made at the Brera astronomical observatory in Milan since 1763. Even if the data have always been collected at this observatory, the Milan series are far from being homogeneous as several changes were made to instruments, station location and observation methods. Within this context, the purpose of the paper is to discuss data homogenisation. Homogenisation is based both on objective information extracted from the station history (direct methodology) and on some statistical estimates (indirect methodology). Homogenisation by indirect methodology is mainly performed by comparison with other series whereas, if no other homogeneous series are available, it is based on the hypothesis that some statistics, such as the daily temperature range or the day to day variability, have no significant trends within some selected periods. Besides homogenisation also the completion of the series is discussed. Theresulting series are complete and homogenised daily minimum, mean and maximum temperatures and complete and homogenised daily mean pressures. They all cover the period 1763–1998.  相似文献   
147.
148.
149.
During the summer of 1992 a geological expedition crossed the northern Karakorum range in northern Pakistan, from the Chitral to Karambar valleys, from the villages of Mastuj to Imit. Some of the areas visited were geologically unknown. A number of structural units were crossed, belonging to the Karakorum block or to other crustal blocks north of it. They are: (a) the axial batholith, in which three plutonic bodies have been identified, and (b) the northern sedimentary belt (NSB), in which three major tectonostratigraphic units form thrust stacks dipping to the north. Their internal stratigraphy and structural style are partly different. The most complete contains a crystalline basement, transgressed by a marine succession during the Early Ordovician. The youngest strata are represented by the Reshun conglomerate, of inferred Cretaceous age. The northernmost unit of the NSB is tightly folded, whereas the central one forms a monocline. Vertical faults, mainly strike-slip, dissect the thrusted slabs. Metamorphic deformation is absent or reaches only the anchizone in the studied sector of the Karakorum NSB. To the north of the Karakorum proper there are several other tectonic units, separated by vertical faults. They are, from south to north: (a) the Taš Kupruk zone, with metavolcanics of basaltic to latibasaltic composition; (b) the Atark unit, mostly consisting of massive carbonate rocks of Mesozoic age; and (c) the Wakhan slates which consist of a thick widespread succession of dark slates, metasiltites and sandstones. The fine-grained elastic rocks are supposed to be Palaeozoic to Early Triassic in age. The Wakhan slates are intruded by plutons belonging to the East Hindu Kush batholith, from which a single K/Ar age on muscovite gave a Jurassic age.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号