首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   16篇
  国内免费   7篇
测绘学   4篇
大气科学   20篇
地球物理   115篇
地质学   174篇
海洋学   45篇
天文学   15篇
综合类   2篇
自然地理   15篇
  2023年   1篇
  2022年   7篇
  2021年   10篇
  2020年   4篇
  2019年   12篇
  2018年   19篇
  2017年   14篇
  2016年   26篇
  2015年   13篇
  2014年   23篇
  2013年   32篇
  2012年   26篇
  2011年   24篇
  2010年   34篇
  2009年   35篇
  2008年   24篇
  2007年   18篇
  2006年   13篇
  2005年   10篇
  2004年   6篇
  2003年   11篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
31.
Discussed are the results of applying a dynamic stochastic method based on the use of the two-dimensional model and the Kalman filtering algorithm for solving the problem of the very short-range (from 0.5 to 6 hours) fore cast of air temperature and orthogonal components of the wind speed in the atmospheric boundary layer realized using the data of radio metric, sodar, and in creased-frequency radiosonde measurements. It is demonstrated that the pro posed technique and the appropriate algorithm give a rather high ac cu racy of very short-range fore casting of temperature and wind within the lead time range under consideration.  相似文献   
32.
Proposed are the methods and software package that enable estimating automatically the degree of the pollution of annual and long-term river runoff at the joint processing of large volumes of standard (routine) hydrological and hydrochemical information. As a result of computations, the individual quality certificate of river runoff was created for the part of the river under study. Computation methods include regulations concerning the parameters that connect the water runoff volume with water quality; the parameters that may connect the computation of the pollution degree using RD 52.24.643-2002 adapted for the partial volumes of the annual runoff according to these methods, with the subsequent classification of the pollution degree. The computation technique was worked out and used for the first time. The informativeness of estimates is demonstrated for one of the discharge section lines of the Selenga River.  相似文献   
33.
In the present work, climate change impacts on three spring (March–June) flood characteristics, i.e. peak, volume and duration, for 21 northeast Canadian basins are evaluated, based on Canadian regional climate model (CRCM) simulations. Conventional univariate frequency analysis for each flood characteristic and copula based bivariate frequency analysis for mutually correlated pairs of flood characteristics (i.e. peak–volume, peak–duration and volume–duration) are carried out. While univariate analysis is focused on return levels of selected return periods (5-, 20- and 50-year), the bivariate analysis is focused on the joint occurrence probabilities P1 and P2 of the three pairs of flood characteristics, where P1 is the probability of any one characteristic in a pair exceeding its threshold and P2 is the probability of both characteristics in a pair exceeding their respective thresholds at the same time. The performance of CRCM is assessed by comparing ERA40 (the European Centre for Medium-Range Weather Forecasts 40-year reanalysis) driven CRCM simulated flood statistics and univariate and bivariate frequency analysis results for the current 1970–1999 period with those observed at selected 16 gauging stations for the same time period. The Generalized Extreme Value distribution is selected as the marginal distribution for flood characteristics and the Clayton copula for developing bivariate distribution functions. The CRCM performs well in simulating mean, standard deviation, and 5-, 20- and 50-year return levels of flood characteristics. The joint occurrence probabilities are also simulated well by the CRCM. A five-member ensemble of the CRCM simulated streamflow for the current (1970–1999) and future (2041–2070) periods, driven by five different members of a Canadian Global Climate Model ensemble, are used in the assessment of projected changes, where future simulations correspond to A2 scenario. The results of projected changes, in general, indicate increases in the marginal values, i.e. return levels of flood characteristics, and the joint occurrence probabilities P1 and P2. It is found that the future marginal values of flood characteristics and P1 and P2 values corresponding to longer return periods will be affected more by anthropogenic climate change than those corresponding to shorter return periods but the former ones are subjected to higher uncertainties.  相似文献   
34.
The morphostructure of the segment between the Cardno and St. Helen transform fracture zones is studied in the rift zone of the South Atlantic slow-spreading mid-oceanic ridge (SAMOR). It was found that it is atypical of similar ridges because of the absence of an evolved rift valley. The rift zone in the transverse section is a cupola with flat slopes, whose surface is divided by volcanic massifs, plateau-like valleys, and unclear ridges and valleys. The entire morphostructure (a cupola-like regional pedestal and the listed relief forms of the second order) indicates its volcanic origin, and the rift zone in this segment is a volcanic high-land. This conclusion is supported by seismic and magnetic data. Because other (not all) SAMOR segments contain the rift valley, the results of this study indicate alternation of the tectonic and magmatic morphostructures along the entire rift zone and identification of its scales is the most important task of the morphostructural study of the SAMOR rift zone. Determination of geodynamic regimes on the basis of the results of morphostructural studies of the rift zone will arise from the solution of this task.  相似文献   
35.
The sinuosity factor (SF) is a critical value in karst systems in terms of estimating their hydrodynamic parameters including groundwater velocity, coefficient of dispersion, etc., through dye tracer experiments. SF has been used in a number of different dye tracer experiments in karstic systems to estimate a representative flow path. While knowing SF is crucially important in the estimation of hydrodynamic parameters, its calculation is associated with significant uncertainty due to the complexity of subsurface karstic features. And yet, only a few studies have discussed its uncertainties, which might lead some errors in estimation of hydrodynamic parameters from dye tracer experiment. In this study, dye tracer experiments were conducted in two consecutive years (2003 and 2004) representing low and high flow conditions in the Beyyayla sinkhole (Eski?ehir, Turkey) where the flow path is well known. Uranine was used in experiments as a tracer and QTRACER computer program was used to determine the hydrodynamic properties of the Beyyayla karst system as well as to gain insights into the effects of SF from dye tracer experiments on estimated parameters. The results showed that the breakthrough curve follows a unimodal and a bimodal distribution in low and high flow conditions, respectively. These different distributions stem from the water transport mechanisms, where velocities were calculated as 58.2 and 93.6 m h?1 during low and high flow conditions observed in a spring emerging from the south side of the studied system. The results also show that the coefficient of dispersion, Reynolds number, and Peclet number increased and longitudinal dispersivity decreased with the higher flow rate. Furthermore, the estimated parameters did not vary with either the flow conditions or the tracer transit time, but they have shown some variations with SF. When SF was increased by 50 %, a change in these parameters was obtained in the range of 50–125 %.  相似文献   
36.
Underground structures are currently widely used and are built as urbanism develops. The interactions between perpendicularly crossing and parallel tunnels in the Tehran region are investigated by using a full three-dimensional (3D) finite difference analysis with elastic-plastic material models. Special attention is paid to the effect of subsequent tunneling on the support system, i.e., the shotcrete lining and rock bolts of the existing tunnel. Eventually, as the tunnels are excavated at certain levels, the interaction between the tunnels will certainly have a significant influence on both stress distribution and consequently deformations. Since multilayer tunneling is a three-dimensional phenomenon in nature, 3D numerical solutions must be utilized for analyzing effect of perpendicularly crossing tunnels at various levels. As Tohid twin tunnels and Line 7 pass beneath the Line 4 metro tunnel, changes in stress distribution, deformations, and surface settlements are studied for various conditions and the results are presented in this paper. Consequently, it is shown that there is a significant interaction between tunnels that necessitate certain preventive measures to maintain a stable tunneling operation.  相似文献   
37.
Can, a county in the province of Canakkale, is one of the most prominent coal mining districts in Turkey. Many mining companies have been operating coal deposits for power generation and district heating in this region since 1980. Generally, small and medium-scale mining companies operate for short periods and abandon the operational land without providing any rehabilitation. Human intervention in the natural structure and topography of the earth surface causes large holes and deterioration in these areas. Artificial lakes occur because of surface discharge and underground leakage into abandoned open pit mines with high lignite sulfur content (0.21–14.36 wt %). Furthermore, these lakes gain acidic character due to acid generation from pyrite oxidation. Acid mine lakes are highly acidic (pH < 3.05) and have elevated concentrations of \({\text{SO}}_{4}^{2 - }\) , Fe and some metals. The main objective of this study is to evaluate the environmental conditions and demonstrate the development of a monitoring system for their possible changes in the acid mine lakes of the open cast lignite mining area on a regional scale. For this purpose, the data received from remote sensing satellites were used. Areal change detection and perimeter changes of nine acid mine lakes caused by coal mining companies in Can from 1977 to 2011, were determined using Landsat, Quickbird and Worldview satellite images. As a case study, an area of 9 km2 was chosen for the variety of acid mine lakes. Using GIS software, satellite images were analyzed in time series, borders of acid mine lakes were digitized and converted into vector data format. At this stage, prior to the digitization, in order to create contrast on the satellite images, “stretch type” and “stretch values” were changed. The areal and perimeter changes were computed and presented via tables and graphics. In addition, thematic maps of the acid mine lakes were created and visualized. The results show that the number of acid mine lakes increased and these caused environmental risks due to their hydrochemical properties and areal increments.  相似文献   
38.
Tertiary volcanics in the northern zone of the Eastern Pontides are characterized by subaerial and shallow-subaqueous facieses, and are divided into three volcanic suites: Eocene aged (1) basalt-trachybasalt-basaltic trachyandesite (BTB) and (2) trachyte-trachyandesite (TT), and Miocene aged (3) basanite-tephrite (BT) suites. Clinopyroxene is a common phase in all three volcanic suites, and has different compositions with Mg# varying from 0.57 to 0.91 in BTB suite and 0.57–0.84 in TT suite to 0.65–0.90 in BT suite. Feldspars in all suites generally exhibit wide range of compositions from sanidine to albite or anorthite and have weak normal and reverse compositional zoning. Olivines in BTB and BT suites have Fo60–92. Hornblendes in BTB, TT and BT suites are commonly magnesio-hastingsite and rare pargasite in composition (Mg#: 0.67–0.90). Brown mica is mainly phlogopite with Mg# ranging from 0.56 to 0.92 in the BTB suite, 0.59–0.84 in the TT suite, and 0.75–0.93 in the BT suite. Analcime is present only in the BT suite rocks. Fe–Ti oxides in all suites are mainly composed of magnetite and titanomagnetite. Textural petrographic and mineral chemical data suggest that magmas had undergone hydrous and anhydrous crystallizations in deep-, mid-, and shallow-crustal magma chambers. Clinopyroxene thermobarometric calculations show that Eocene magma chambers were characterized by temperature ranging from 1,100 to 1,244 °C and pressure ranging from 1.84 to 5.39 kbar. Similarly, the Miocene magma chambers were characterized by temperature ranging from 1,119 to 1,146 °C and pressure ranging from 4.23 to 4.93 kbar. Hornblende thermobarometry, oxygen fugacity, and hygrometer reveal that the crystallization temperature of Eocene volcanics range from 956 to 959 °C at pressure ranging from 6.49 to 6.52 kbar. Eocene volcanics were characterized by water content ranging from 7.83 to 8.57 wt.% and oxygen fugacity of 10?9.36 to 10?9.46 (ΔNNO+2). Miocene volcanics had crystallization temperature ranging from 970 to 978 °C at pressure ranging from 8.70 to 9.00 kbar with water content ranging from 8.04 to 8.64 wt.% and oxygen fugacity ranging from 10?8.75 to 10?8.87 (ΔNNO+2). Brown mica thermobarometric data show that Eocene volcanics were characterized by relatively high oxygen fugacity varying from 10-10.32 to 10-12.37 (HM) at temperature ranging from 858 to 953 °C and pressure ranging from 1.08 to 1.41 kbar. Miocene volcanics were crystallized at highly oxidized conditions, which are characterized by high oxygen fugacity of 10?12.0 (HM) at temperature of 875 °C and pressure of 2.09 kbar. The wide range of obtained temperatures for clinopyroxenes of the suites denotes that the equilibration of clinopyroxene crystals initiates from depth until close to the surface before magma eruption. The compositional variations, resorbed core and reverse zoning patterns in clinopyroxene phenocrysts, as well as variable pressures of crystallization, further indicate that the magmas that formed the suites were polybaric in origins and were composite products of more than one petrogenetic stage. The observed range of phenocryst assemblage and different compositional trends possibly originated from fractionation of magmas with different initial water contents under variable pressures of crystallization. The repeated occurrence of magmas from different suites during a single period of activity suggests that the magmatic system consists of several conduit systems and that magma reservoirs are dispersed at different levels of crustal magma chambers.  相似文献   
39.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
40.
Travertine deposits in western Turkey are very well‐exposed in the area of Kocaba?, in the eastern part of the Denizli Basin. The palaeoclimatic significance of these travertines is discussed using U/Th dates, stable isotope data and palynological evidence. The Kocaba? travertine occurrences are characterized by successions of depositional terraces associated with palaeosols and karstic features. The travertines have been classified into eight lithotypes and one erosional horizon, namely: laminated, coated bubble, reed, paper‐thin raft, intraclasts, micritic travertine with gastropods, extra‐formational pebbles and a palaeosol layer. The analysed travertines mostly formed between 181 ka and 80 ka (Middle to Late Pleistocene) during a series of climatic changes including glacial and interglacial intervals; their δ13C and δ18O values indicate that the depositional waters were mainly of basinal thermal origin, occasionally mixed with surficial meteoric water. Palynological results obtained from the palaeosols showed an abundance of non‐arboreal percentage and xerophytic plants (Oleaceae and Quercus evergreen type) indicating that a drought occurred. Marine Isotope Stage 6 is represented by grassland species but Marine Isotope Stage 5 is represented by Pinaceae–Pinus and Abies, Quercus and Oleaceae. Uranium/thorium analyses of the Kocaba? travertines show that deposition began in Marine Isotope Stage 6 (glacial) and continued to Marine Isotope Stage 4 (glacial), but mostly occurred in Marine Isotope Stage 5 (interglacial). The travertine deposition continued to ca 80 ka in the south‐west of the study area, in one particular depression depositional system. Palaeoenvironmental indicators suggest that the travertine depositional evolution was probably controlled by fault‐related movements that influenced groundwater flow. Good correlation of the stable isotope values and dates of deposition of the travertines and palynological data of palaeosols in the Kocaba? travertines serve as a starting point for further palaeoclimate studies in south‐west Turkey. Additionally, the study can be compared with other regional palaeoclimate archives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号