首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6564篇
  免费   287篇
  国内免费   79篇
测绘学   235篇
大气科学   517篇
地球物理   1545篇
地质学   2187篇
海洋学   538篇
天文学   1226篇
综合类   28篇
自然地理   654篇
  2022年   30篇
  2021年   77篇
  2020年   86篇
  2019年   122篇
  2018年   178篇
  2017年   162篇
  2016年   232篇
  2015年   175篇
  2014年   199篇
  2013年   424篇
  2012年   258篇
  2011年   346篇
  2010年   294篇
  2009年   384篇
  2008年   339篇
  2007年   297篇
  2006年   270篇
  2005年   266篇
  2004年   274篇
  2003年   208篇
  2002年   225篇
  2001年   128篇
  2000年   152篇
  1999年   106篇
  1998年   119篇
  1997年   82篇
  1996年   87篇
  1995年   83篇
  1994年   90篇
  1993年   73篇
  1992年   91篇
  1991年   68篇
  1990年   54篇
  1989年   50篇
  1988年   54篇
  1987年   51篇
  1986年   55篇
  1985年   71篇
  1984年   65篇
  1983年   77篇
  1982年   57篇
  1981年   67篇
  1980年   56篇
  1979年   68篇
  1978年   54篇
  1977年   36篇
  1976年   28篇
  1975年   27篇
  1974年   28篇
  1973年   30篇
排序方式: 共有6930条查询结果,搜索用时 20 毫秒
991.
We report laboratory experiments and modeling calculations investigating the effect of a hydrocarbon coating on ammonia ice spectral signatures. Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in areas of strong vertical transport, indicating a short lifetime for the signature of ammonia absorption on condensed ammonia particles [Baines, K.H., Carlson, R.W., Kamp, L.W., 2002. Icarus 159, 74-94]. Current literature has suggested coating of ammonia ice particles by a hydrocarbon haze as a possible explanation for this paradox. The work presented here supports the inference of a coating effect that can alter or suppress ammonia absorption features. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by reflection-absorption infrared spectroscopy. We have observed the effects on the ammonia ice absorption features near 3 and 9 μm with coverage by thin layers of hydrocarbons. Modeling calculations of these multilayer thin films assist in the interpretation of the experimental results and reveal the important role of optical interference in altering the aforementioned ammonia spectral features. Mie and T-matrix scattering calculations demonstrate analogous effects for ammonia ice particles and investigate the relative effects of ammonia ice particle size, shape, and coating layer thickness on the ice particle spectral signatures.  相似文献   
992.
Comet 73P-B/Schwassmann-Wachmann 3 was observed with IRCS/Subaru at geocentric distance of 0.074 AU on UT 10 May 2006. Multiple H2O emission lines were detected in non-resonant fluorescence near 2.9 μm. No significant variation in total H2O production rate was found during the (3 h) duration of our observations. H2O rotational temperatures and ortho-to-para abundance ratios were measured for several positions in the coma. The temperatures extracted from two different time intervals show very similar spatial distributions. For both, the rotational temperature decreased from ∼110 to ∼90 K as the projected distance from the nucleus increased from ∼5 to ∼30 km. We see no evidence for OPR change in the coma. The H2O ortho-para ratio is consistent with the statistical equilibrium value (3.0) for all spatially resolved measurements. This implies a nuclear spin temperature higher than ∼45 K.  相似文献   
993.
Although electron probe microanalysis and secondary ion mass spectrometry are widely used analytical techniques for geochemical and mineralogical applications, metrologically rigorous quantification remains a major challenge for these methods. Secondary ion mass spectrometry (SIMS) in particular is a matrix‐sensitive method, and the use of matrix‐matched reference materials (RMs) is essential to avoid significant analytical bias. A major problem is that the number of available RMs for SIMS is extremely small compared with the needs of analysts. One approach for the production of matrix‐specific RMs is the use of high‐energy ion implantation that introduces a known amount of a selected isotope into a material. We chose the more elaborate way of implanting a so‐called ‘box‐profile’ to generate a quasi‐homogeneous concentration of the implanted isotope in three dimensions, which allows RMs not only to be used for ion beam analysis but also makes them suitable for EPMA. For proof of concept, we used the thoroughly studied mineralogically and chemically ‘simple’ SiO2 system. We implanted either 47Ti or 48Ti into synthetic, ultra‐high‐purity silica glass. Several ‘box‐profiles’ with mass fractions between 10 and 1000 μg g?1 Ti and maximum depths of homogeneous Ti distribution between 200 nm and 3 μm were produced at the Institute of Ion Beam Physics and Materials Research of Helmholtz‐Zentrum Dresden‐Rossendorf. Multiple implantation steps using varying ion energies and ion doses were simulated with Stopping and Range of Ions in Matter (SRIM) software, optimising for the target concentrations, implantation depths and technical limits of the implanter. We characterised several implant test samples having different concentrations and maximum implantation depths by means of SIMS and other analytical techniques. The results show that the implant samples are suitable for use as reference materials for SIMS measurements. The multi‐energy ion implantation technique also appears to be a promising procedure for the production of EPMA‐suitable reference materials.  相似文献   
994.
The Gongga Shan batholith is a complex granitoid batholith on the eastern margin of the Tibetan Plateau with a long history of magmatism spanning from the Triassic to the Pliocene. Late Miocene-Pliocene units are the youngest exposed crustal melts within the entire Asian plate of the Tibetan Plateau.Here, we present in-situ zircon Hf isotope constraints on their magmatic source, to aid the understanding of how these young melts were formed and how they were exhumed to the surface. Hf isotope signatures of Eocene to Pliocene zircon rims(εHf(t)=-4 to +4), interpreted to have grown during localised crustal melting, are indicative of melting of a Neoproterozoic source region, equivalent to the nearby exposed Kangding Complex. Therefore, we suggest that Neoproterozoic crust underlies this region of the Songpan-Ganze terrane, and sourced the intrusive granites that form the Gongga Shan batholith. Localised young melting of Neoproterozoic lower or middle crust requires localised melt-fertile lithologies. We suggest that such melts may be equivalent to seismic and magnetotelluric low-velocity and high-conductivity zones or "bright spots" imaged across much of the Tibetan Plateau. The lack of widespread exposed melts this age is due either to the lack of melt-fertile rocks in the middle crust, the very low erosion level of the Tibetan plateau, or to a lack of mechanism for exhuming such melts. For Gongga Shan, where some melting is younger than nearby thermochronological ages of low temperature cooling, the exact process and timing of exhumation remains enigmatic, but their location away from the Xianshuihe fault precludes the fault acting as a conduit for the young melts. We suggest that underthrusting of dry granulites of the lower Indian crust(Archaean shield) this far northeast is a plausible mechanism to explain the uplift and exhumation of the eastern Tibetan Plateau.  相似文献   
995.
In this paper, a literature‐based compilation of the timing and history of salt tectonics in the Southern Permian Basin (Central Europe) is presented. The tectono‐stratigraphic evolution of the Southern Permian Basin is influenced by salt movement and the structural development of various types of salt structures. The compilation presented here was used to characterize the following syndepositional growth stages of the salt structures: (a) “phase of initiation”; (b) phase of fastest growth (“main activity”); and (c) phase of burial’. We have also mapped the spatial pattern of potential mechanisms that triggered the initiation of salt structures over the area studied and summarized them for distinct regions (sub‐basins, platforms, etc.). The data base compiled and the set of maps produced from it provide a detailed overview of the spatial and temporal distribution of salt tectonic activity enabling the correlation of tectonic phases between specific regions of the entire Southern Permian Basin. Accordingly, salt movements were initiated in deeply subsided graben structures and fault zones during the Early and Middle Triassic. In these areas, salt structures reached their phase of main activity already during the Late Triassic or the Jurassic and were mostly buried during the Early Cretaceous. Salt structures in less subsided sub‐basins and platform regions of the Southern Permian Basin mostly started to grow during the Late Triassic. The subsequent phase of main activity of these salt structures took place from the Late Cretaceous to the Cenozoic. The analysis of the trigger mechanisms revealed that most salt structures were initiated by large‐offset normal faults in the sub‐salt basement in the large graben structures and minor normal faulting associated with thin‐skinned extension in the less subsided basin parts.  相似文献   
996.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
997.
The geological mapping carried out by William Smith, which resulted in the publication of his famous map in 1815, was remarkable in many respects, not least because it relied on him being able to make consistent and accurate observations on the rock types he encountered during his fieldwork. This ability, gained from his many years studying rocks, allowed him to observe features with his own eyes (or at the very least, with the aid of a simple magnifying device) that others could not. We take a new look at William Smith's original stratigraphical sequences, and with samples collected from his classic field areas (many of which are around the city of Bath, Somerset, UK), demonstrate how spatial mineralogy mapping can be incorporated into the modern age of digital mapping.  相似文献   
998.
Determining mean transit times in headwater catchments is critical for understanding catchment functioning and understanding their responses to changes in landuse or climate. Determining whether mean transit times (MTTs) correlate with drainage density, slope angle, area, or land cover permits a better understanding of the controls on water flow through catchments and allows first-order predictions of MTTs in other catchments to be made. This study assesses whether there are identifiable controls on MTTs determined using 3H in headwater catchments of southeast Australia. Despite MTTs at baseflow varying from a few years to >100 years, it was difficult to predict MTTs using single or groups of readily-measured catchment attributes. The lack of readily-identifiable correlations hampers the prediction of MTTs in adjacent catchments even where these have similar geology, land use, and topography. The long MTTs of the Australian headwater catchments are probably in part due to the catchments having high storage volumes in deeply-weathered regolith, combined with low recharge rates due to high evapotranspiration. However, the difficulty in estimating storage volumes at the catchment scale hampers the use of this parameter to estimate MTTs. The runoff coefficient (the fraction of rainfall exported via the stream) is probably also controlled by evapotranspiration and recharge rates. Correlations between the runoff coefficient and MTTs in individual catchments allow predictions of MTTs in nearby catchments to be made. MTTs are shorter in high rainfall periods as the catchments wet up and shallow water stores are mobilized. Despite the contribution of younger water, the major ion geochemistry in individual catchments commonly does not correlate with MTTs, probably reflecting heterogeneous reactions and varying degrees of evapotranspiration. Documenting MTTs in catchments with high storage volumes and/or low recharge rates elsewhere is important for understanding MTTs in diverse environments.  相似文献   
999.
Although 97% of U.S. farms are “family-owned,” little research examines how gender and sexual relationships – inherent in familial dynamics – influence farmers’ practices and livelihoods. Gender and sexual dynamics – shaped by race and class – affect who is considered a farmer, land management decisions, and access to resources like land, subsidies, and knowledge. We use feminist and queer lenses to illuminate how today’s agricultural gender and sexual relations are not “natural,” but when left uninterrogated are constructed in ways that harm women and queer farmers while limiting potential to develop sustainable practices. Women and queer farmers also resist, “re-orienting” gender and sexual relations in ways that expand possibilities for achieving food justice and ecological sustainability. We offer “relational agriculture” as a tool for making visible and re-orienting gender and sexual relations on farms. Relational agriculture brings sexuality into food justice and demonstrates the centrality of gender and sexuality to agricultural sustainability.  相似文献   
1000.
We developed a seismic geomorphology-based procedure to enhance traditional trajectory analysis with the ability to visualize and quantify lateral variability along carbonate prograding-margin types (ramps and rimmed shelves) in 3D and 4D. This quantitative approach analysed the shelf break geometric evolution of the Oligo-Miocene carbonate clinoform system in the Browse Basin and delineated the feedback between antecedent topography and carbonate system response as controlling factor on shelf break rugosity. Our geometrical analysis identified a systematic shift in the large-scale average shelf break strike direction over a transect of 10 km from 62° to 55° in the Oligo-Miocene interval of the Browse Basin, which is likely controlled by far-field allogenic forcing from the Timor Trough collision zone. Plotting of 3D shelf break trajectories represents a convenient way to visualize the lateral variability in shelf break evolution. Shelf break trajectories that indicate contemporaneous along-strike progradation and retrogradation correlate with phases of autogenic slope system re-organization and may be a proxy for morphological stability of the shelf break. Shelf break rugosity and shelf break trajectory rugosity are not inherited parameters and antecedent topography does not dictate long-term differential movement of the shelf margin through successive depositional sequences. The autogenic carbonate system response to antecedent topography smooths high-rugosity areas by filling accommodation and maintains a relatively constant shelf break rugosity of ~150 m. Color-coding of the vertical component in the shelf break trajectory captures the creation and filling of accommodation, and highlights areas of the transect that are likely to yield inconsistent 2D sequence stratigraphic interpretations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号