首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54971篇
  免费   903篇
  国内免费   612篇
测绘学   1489篇
大气科学   3844篇
地球物理   10213篇
地质学   20209篇
海洋学   4973篇
天文学   12971篇
综合类   208篇
自然地理   2579篇
  2022年   390篇
  2021年   662篇
  2020年   702篇
  2019年   745篇
  2018年   1713篇
  2017年   1624篇
  2016年   1988篇
  2015年   1052篇
  2014年   1848篇
  2013年   3037篇
  2012年   1930篇
  2011年   2473篇
  2010年   2136篇
  2009年   2759篇
  2008年   2356篇
  2007年   2385篇
  2006年   2235篇
  2005年   1653篇
  2004年   1674篇
  2003年   1578篇
  2002年   1504篇
  2001年   1309篇
  2000年   1233篇
  1999年   1000篇
  1998年   1052篇
  1997年   961篇
  1996年   819篇
  1995年   791篇
  1994年   691篇
  1993年   607篇
  1992年   592篇
  1991年   599篇
  1990年   628篇
  1989年   500篇
  1988年   507篇
  1987年   533篇
  1986年   498篇
  1985年   618篇
  1984年   680篇
  1983年   597篇
  1982年   572篇
  1981年   504篇
  1980年   473篇
  1979年   483篇
  1978年   463篇
  1977年   370篇
  1976年   348篇
  1975年   359篇
  1974年   310篇
  1973年   345篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
871.
872.
873.
874.
875.
We present the results of two-dimensional calculations of a magneto-rotational (MR) supernova explosion with a collapsing core for various core masses, rotational angular momenta, and magnetic-field configurations. It is shown that the MR mechanism produces an explosion energy that corresponds to observed values. The form of the explosion depends substantially on the initial configuration of the magnetic field. MR instability develops during the evolution of the magnetic field in an MR supernova explosion, resulting in an exponential increase of all components of the magnetic field, thereby substantially decreasing the time scale of the MR explosion. The energy of the supernova increases with the core’s mass and initial rotational energy.  相似文献   
876.
The proposed PT grid of mineral facies of metamorphic rocks, which retains the commonly adopted nomenclature (greenschist, epidote-amphibolite, amphibolite, granulite, glaucophane-schist, and eclogite facies), is based on original calculations and the published calculated and experimental data on mineral equilibria. To validate the facies and subfacies PT boundaries, the mineral equilibria in metapelitic and metabasic rocks have been used.  相似文献   
877.
The REE distribution in minerals from tin-bearing ore-magmatic systems of the Russian Far East, including the Komsomolsk, Khingan, and Badzhal districts in the Amur region and the Kavalerovo, Lesozavodsk, Voznesenka, Furmanovo, and other districts in Primorsky krai, has been studied. The main attention was focused on tourmaline and chlorite; in addition, associated biotite, feldspar, apatite, fluorite, and carbonates were examined. The major factors affecting the REE distribution in the studied minerals are the temperature, Eh, and pH of the mineral-forming medium; crystal chemistry; partition coefficients of REE between fluid and minerals; and complexation that disturbs the coherent behavior of REE. Fluid evolution at different stages is characterized.  相似文献   
878.
We have studied the variability of the Hβ line and the adjacent continuum in the spectrum of the Seyfert galaxy Ark 120, based on spectral observations of the galaxy’s nucleus obtained in the Crimea in 1992–2005, supplemented by published data for 1988–1996. Irregular variability on various timescales (years to days) can be accompanied by periodic brightness variations in both the continuum and the Hβ line, with a period of P ~ 430 days and an amplitude of Δm ~ 0.2 m in the continuum, which were traced for more than 13 cycles. In total, in 1988–2005, the flux variations in the line lag those in the continuum by 55 ± 9 days if calculated from the peak of the cross correlation function, or by 72 ± 7 days, if calculated from the centroid of the CCF. The delay is correlated with the continuum brightness, increasing when the continuum flux increases. The Hβ line profiles indicate both a high degree of diversity and the presence of features that recur after various extended time intervals. Analysis of the evolution of the differences between each individual normalized line profile and the mean normalized profile indicates systematic motion of excesses relative to the average profile from negative to positive radial velocities. In contrast, parts of the Hβ line with low radiation relative to the mean normalized profile evolve in the opposite direction (from the red to the blue Hβ wing). This pattern is also typical for the rotating broad-line region, if this region has the form of a disk. The rotation period exceeds 9000–10000 days, or 25–27 years. The size of the broad-line region calculated form this period corresponds to a reverberation time of no fewer than 30 days, consistent with the results of cross-correlation analysis.  相似文献   
879.

Background  

The application of surface complexation models (SCMs) to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids.  相似文献   
880.
The crystal structures of two new compounds (H3O)2[(UO2)(SeO4)2(H2O)](H2O)2 (1, orthorhombic, Pnma, a = 14.0328(18), b = 11.6412(13), c = 8.2146(13) Å, V = 134.9(3) Å3) and (H3O)2[(UO2)(SeO4)2(H2O)](H2O) (2, monoclinic, P21/c, a = 7.8670(12), b = 7.5357(7), c = 21.386(3) Å, β = 101.484(12)°, V = 1242.5(3) Å3) have been solved by direct methods and refined to R 1 = 0.076 and 0.080, respectively. The structures of both compounds contain sheet complexes [(UO2)(SeO4)2]2? formed by cornershared [(UO2)O4(H2O)] bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (100) plane in structure 1 and to (?102) in structure 2. The [(UO2)(SeO4)2(H2O)]2? layers are linked by hydrogen bonds via interlayer groups H2O and H3O+. The sheet topologies in structures 1 and 2 are different and correspond to the topologies of octahedral and tetrahedral complexes in rhomboclase (H2O2)+[Fe(SO4)2(H2O)2] and goldichite K[Fe(SO4)2(H2O)2](H2O)2, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号