首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   28篇
  国内免费   1篇
测绘学   15篇
大气科学   28篇
地球物理   79篇
地质学   149篇
海洋学   47篇
天文学   75篇
自然地理   31篇
  2023年   2篇
  2021年   7篇
  2020年   5篇
  2019年   8篇
  2018年   9篇
  2017年   12篇
  2016年   15篇
  2015年   11篇
  2014年   9篇
  2013年   17篇
  2012年   7篇
  2011年   13篇
  2010年   8篇
  2009年   17篇
  2008年   18篇
  2007年   9篇
  2006年   13篇
  2005年   19篇
  2004年   17篇
  2003年   20篇
  2002年   12篇
  2001年   11篇
  2000年   13篇
  1999年   12篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   2篇
  1985年   13篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   7篇
  1980年   9篇
  1979年   6篇
  1978年   10篇
  1977年   2篇
  1976年   6篇
  1975年   9篇
  1974年   5篇
  1973年   7篇
  1971年   2篇
排序方式: 共有424条查询结果,搜索用时 125 毫秒
421.
The oceans moderate the rate and severity of climate change by absorbing massive amounts of anthropogenic CO2 but this results in large-scale changes in seawater chemistry, which are collectively referred to as anthropogenic ocean acidification. Despite its potentially widespread consequences, the problem of ocean acidification has been largely absent from most policy discussions of CO2 emissions, both because the science is relatively new and because the research community has yet to deliver a clear message to decision makers regarding its impacts. Here we report the results of the first expert survey in the field of ocean acidification. Fifty-three experts, who had previously participated in an IPCC workshop, were asked to assess 22 declarative statements about ocean acidification and its consequences. We find a relatively strong consensus on most issues related to past, present and future chemical aspects of ocean acidification: non-anthropogenic ocean acidification events have occurred in the geological past, anthropogenic CO2 emissions are the main (but not the only) mechanism generating the current ocean acidification event, and anthropogenic ocean acidification that has occurred due to historical fossil fuel emissions will be felt for centuries. Experts generally agreed that there will be impacts on biological and ecological processes and biogeochemical feedbacks but levels of agreement were lower, with more variability across responses. Levels of agreement were higher for statements regarding calcification, primary production and nitrogen fixation than for those about impacts on foodwebs. The levels of agreement for statements pertaining to socio-economic impacts, such as impacts on food security, and to more normative policy issues, were relatively low.  相似文献   
422.
We present two-feldspar thermometry and diffusion chronometry from sanidine, orthopyroxene and quartz from multiple samples of the Bishop Tuff, California, to constrain the temperature stratification within the pre-eruptive magma body and the timescales of magma mixing prior to its evacuation. Two-feldspar thermometry yields estimates that agree well with previous Fe–Ti oxide thermometry and gives a ~80 °C temperature difference between the earlier- and later-erupted regions of the magma chamber. Using the thermometry results, we model diffusion of Ti in quartz, and Ba and Sr in sanidine as well as Fe–Mg interdiffusion in orthopyroxene to yield timescales for the formation of overgrowth rims on these crystal phases. Diffusion profiles of Ti in quartz and Fe–Mg in orthopyroxene both yield timescales of <150 years for the formation of overgrowth rims. In contrast, both Ba and Sr diffusion in sanidine yield nominal timescales 1–2 orders of magnitude longer than these two methods. The main cause for this discrepancy is inferred to be an incorrect assumption for the initial profile shape for Ba and Sr diffusion modelling (i.e. growth zoning exists). Utilising the divergent diffusion behaviour of Ba and Sr, we place constraints on the initial width of the interface and can refine our initial conditions considerably, bringing Ba and Sr data into alignment, and yielding timescales closer to 500 years, the majority of which are then within uncertainty of timescales modelled from Ti diffusion in quartz. Care must be thus taken when using Ba in sanidine geospeedometry in evolved magmatic systems where no other phases or elements are available for comparative diffusion profiling. Our diffusion modelling reveals piecemeal rejuvenation of the lower parts of the Bishop Tuff magma chamber at least 500 years prior to eruption. Timescales from our mineral profiling imply either that diffusion coefficients currently used are uncertain by 1–2 orders of magnitude, or that the minerals concerned did not experience a common history, despite being extracted from the same single pumice clasts. Introduction of the magma initiating crystallisation of the contrasting rims on sanidine, quartz, orthopyroxene and zircon was prolonged, and may be a marker of other processes that initiated the Bishop Tuff eruption rather than the trigger itself.  相似文献   
423.
We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe–Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10–15 kyr before the eruption. The mush top was quartz-bearing and as shallow as ~3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of ~840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of ~790 °C, reflecting rapid cooling from the ~840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3–5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic magmas with the mush and melt-dominant body. However, the mafic magmas do not appear to have triggered the eruption or controlled magmatic temperatures in the erupted rhyolite. Integration of textural and compositional data from all available crystal types, across all dominant and subordinate magmatic components, allow the history of the Oruanui magma body to be reconstructed over a wide range of temporal scales using multiple techniques. This history spans the tens of millennia required to grow the parental magma system (U–Th disequilibrium dating in zircon), through the centuries and decades required to assemble the eruptible magma body (textural and diffusion modelling in orthopyroxene), to the months, days, hours and minutes over which individual phases of the eruption occurred, identified through field observations tied to diffusion modelling in magnetite, olivine, quartz and feldspar. Tectonic processes, rather than any inherent characteristics of the magmatic system, were a principal factor acting to drive the rapid accumulation of magma and control its release episodically during the eruption. This work highlights the richness of information that can be gained by integrating multiple lines of petrologic evidence into a holistic timeline of field-verifiable processes.  相似文献   
424.
Nearly all of our understanding of rocky inter‐tidal ecology comes from studies conducted at low tide. To study inter‐tidal organisms at high tide, we anchored waterproof digital GoPro® video cameras in wave‐exposed tidepools and recorded the daytime movements of the black turban snail, Tegula funebralis, over the tidal cycle between May and August 2012 near Bodega Bay, California. Overall, snails moved more quickly and presumably foraged more during low tides and on days with warmer air and perhaps water temperatures. This is similar to other ectotherms that exhibit increased metabolic rates, movement and foraging in warmer conditions. Snails also moved less during flood and high tides, may have moved downward in tidepools at flood tides, and showed evidence of reduced activity on days with larger waves. This inactivity and refuge seeking may have been a strategy to avoid dislodgment by waves. Analysis of snail trajectories showed foraging bouts indicated by alternating zig‐zagging and straight movement. There was no effect of temperature, wave height, or tidal phase on distribution of snail turning angles, suggesting that they may have foraged consistently but moved faster during warm conditions and low tides, thereby grazing a larger area. This is one of few direct recordings of inter‐tidal organisms on wave‐exposed rocky shores during high tide. The methods used here are easily transferable to other studies, which are needed to increase our understanding of behaviors that structure rocky shore communities during high tide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号