首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
大气科学   2篇
地球物理   4篇
地质学   5篇
海洋学   2篇
天文学   1篇
自然地理   2篇
  2024年   1篇
  2018年   1篇
  2016年   3篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2003年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
A quasiperiodic variation of 100–110 days in the Kuroshio path off Cape Ashizuri, resulting from the passage of small meanders, was detected by observation with moored current meters during 1993–1995. TOPEX/POSEIDON altimeter data covering 9 years showed that the quasiperiodic variation period was not persistent and modulated twice, with a ∼110-day period from mid-1993 to late 1996, a ∼150-day period from late 1996 to mid-1999, and a ∼110-day period from mid-1999 to late 2001. The quasiperiodic variations of the Kuroshio path migration were contemporaneous with the quasiperiodic arrivals of mesoscale eddies from the east along 27–32°N over the same ∼110- and ∼150-day period quasiperiodic variations. The periodic arrivals of the eddies configure the periodic variations of the Kuroshio path and its inter-annual modulation.  相似文献   
12.
Understanding the process of accumulation is fundamental to recognising the magnitude and speed of emissions reduction required to stabilise atmospheric CO2 and, hence, global temperature. This research investigated the effectiveness of analogy for building understanding of accumulation among non-experts. Two studies tested the effects of analogy and graphical information on: (1) performance on a CO2 stabilisation task; and (2) preferred level of action on climate change. Study 1 was conducted with a sample of undergraduate students and Study 2, with a sample of the Australian public. In the student sample, analogical processing significantly improved task performance when information about emission rates was presented in text but not when it was presented in graph format. It was also associated with greater preference for strong action on climate change. When tested with the public, analogy and information format independently influenced task performance. Furthermore, there was a marginal effect of education such that the analogy especially might have helped those with at least high school attainment. Our results show that analogy can improve non-experts’ understanding of CO2 accumulation but that using graphs to convey emissions rate information is detrimental to such improvements. The results should be of interest to climate change communicators, advocates, and policy-makers.  相似文献   
13.
Hwajinpo is the largest lagoon in Korea and is located along the east coast of the country. It possesses Holocene sediments that provide an important record of past climate change. We studied the evolution of Hwajinpo Lagoon using grain size data and diatom assemblages in an 11.0-m core (HJ02), which was obtained at the mouth of a small river that drains into the lagoon. Core chronology was established with accelerator mass spectrometry 14C dates and optically stimulated luminescence dates. Diatom assemblages and grain size analysis revealed that estuarine conditions in the inner lagoon area transitioned to an open embayment ca. 8 ka as a result of sea-level rise. Around 7.8 ka, the open bay became a semi-closed bay as a consequence of development of a sand barrier. After the bay was semi-closed, marine water inflow was increasingly restricted as the sand barrier developed, and the semi-closed bay became a completely enclosed, low-salinity, brackish lagoon around 6 ka. There was an erosional hiatus between 5.5 and 1.7 ka (7.0 m depth), likely caused by river flooding and a switch in the location of drainage along the delta. The lagoon became oligohaline around 1.6 ka, likely because of increasing precipitation associated with an intensified Asian summer monsoon. This increase in precipitation resulted in expansion of the sand bar by sediment inflow, driven by agricultural development in the area. About 1000 years ago, the diatom assemblage was similar to the modern assemblage, suggesting the lagoon’s current geomorphic conditions had been established.  相似文献   
14.
15.
Chemical states of carbon in terrestrial (meta) sediments and carbonaceous chondrites gather attention as a geothermometer. As a nondestructive analytical method, Raman spectroscopy has been widely used to study their electronic properties, crystallinity, and structural defects through so-called D and G bands. For the analysis of Raman spectra, a common problem is coexistence of a fluorescence background, which should be subtracted prior to the peak-fitting analysis. However, we recently faced a problem that the band shape noticeably changed depending on the background function assumed although the background seemed to be well subtracted at a first glance regardless of the choice of the background function. For the application of the Raman spectroscopy as a geothermometer, a standard background subtraction method must be established to suppress the arbitrariness. In the present study, Raman spectra of seven carbon-containing natural samples, whose background intensities were significantly different, were measured, and their background shape was evaluated by first-, second-, and third-order polynomials. The results indicated that the third-order polynomial was necessary and sufficient as a standard background function. Importantly, although lower order polynomials seem to successfully fit the background at a first glance, they falsely caused dispersion of the shoulder band shape.  相似文献   
16.
Theoretically, the geostrophic approximation holds for the low-frequency flow field, but no detailed examination has been done on how well the estimated geostrophic velocity corresponds with the observed velocity. Intensive surveys were carried out during 1993–1995 in the Kuroshio and its recirculation regions south of Shikoku, Japan, including repeated hydrographic surveys and direct current measurements at nominal depths of 700, 1500 and 3000 m. For these depth intervals, vertical differences of estimated geostrophic velocity are compared with those of observed velocity. For the intermediate layer (between 700 and 1500 m depths), the slope of the regression line is 0.99, correlation coefficient is 0.98, and the root-mean-square of difference from geostrophic balance is 2.8 cm/s which is close to the estimated error of 2.1 cm/s. For the deep layer (between 1500 and 3000 m depths), the corresponding values are 0.82, 0.93, 1.2 cm/s and 2.0 cm/s, respectively. The results indicate that the estimated geostrophic velocity compares well with the observed velocity in these regions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号