首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   16篇
  国内免费   9篇
测绘学   56篇
大气科学   28篇
地球物理   115篇
地质学   160篇
海洋学   32篇
天文学   142篇
综合类   4篇
自然地理   30篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   19篇
  2017年   22篇
  2016年   17篇
  2015年   12篇
  2014年   22篇
  2013年   27篇
  2012年   21篇
  2011年   29篇
  2010年   25篇
  2009年   35篇
  2008年   18篇
  2007年   23篇
  2006年   33篇
  2005年   19篇
  2004年   18篇
  2003年   12篇
  2002年   17篇
  2001年   14篇
  2000年   14篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   7篇
  1994年   11篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   8篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   6篇
  1981年   4篇
  1980年   9篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1974年   3篇
  1972年   4篇
  1971年   3篇
  1970年   5篇
排序方式: 共有567条查询结果,搜索用时 15 毫秒
61.

Debris flow has caused severe human casualties and economic losses in landslide-prone areas around the globe. A comprehensive understanding of the morphology and deposition mechanisms of debris flows is crucial to delineate the extent of a debris flow hazard. However, due to inherent complex field topography and varying compositions of the flowing debris, coupled with a lack of fundamental understanding about the factors controlling the geomaterial flow, interparticle interactions and its final settlement resulted in a limited understanding of the flow behaviour of the landslide debris. In this study, a physical model was set up in the laboratory to simulate and calibrate the debris flow using PFC, a distinct element modelling-based software. After calibration, a case study of the Varunavat landslide was taken to validate the developed numerical model. Following validation with an acceptable level of confidence, several models were generated to evaluate the effect of slope height, slope angle, slope profile, and grain size distribution of the dislodged geomaterial in the rheological properties of debris flow. Both qualitative and quantitative analysis of the landslide debris flow was performed. Finally, the utility of retaining wall and their effect on debris flow is also studied with different retaining wall positions along the slope surface.

  相似文献   
62.
63.
Astrophysical compact stars provide a natural laboratory for testing theoretical models which are otherwise difficult to prove from an experimental setup. In our present work we analyse an exact solution to the Einstein-Maxwell system for a charged anisotropic compact body in the linear regime. The charged parameter may be set to zero which gives us the case of neutral solutions. We have tuned the model parameters for the uncharged case so as to match with recent updated mass-radius estimates for five different compact objects. Then we make a systematic study of the effect of charge for the different parameter set that fits the observed stars. The effect of charge is clearly illustrated in the increase of mass. We show that the physical quantities for the objects PSR J1614-2230, PSR J1903+327, Vela X-1, SMC X-1, Cen X-3 are well behaved.  相似文献   
64.
The discovery that newborn very low mass stars and brown dwarfs have optical forbidden line spectra similar to low mass young stars was a strong indication that these objects can also launch outflows. Forbidden lines are the traditional tracers of outflow activity in young stars and observations at these wavelengths have contributed much to the understanding of outflows. However in the case of brown dwarfs, the forbidden emission line regions observed are not well resolved spatially. Thus, their origin in an outflow could not be confirmed. Here, the technique of spectro-astrometry as a means of spatially probing the forbidden emission line regions of very low mass stars and brown dwarfs is introduced. Indeed spectro-astrometric data presented here demonstrates, for the first time, that young brown dwarfs that are actively accreting can drive outflows. Also discussed is the important role adaptive optics will play when it comes to spatially resolving the forbidden emission line regions of sub-stellar objects and the potential for developing spectro-astrometry to a 2D form through integral field spectroscopy.  相似文献   
65.
We present Gemini Multi-Object Spectrograph longslit spectroscopy of the isolated S0 galaxy NGC 3115. We have determined kinematical data and Lick/IDS absorption line-strength indices for the major axis out to around 9 kpc and for the minor axis out to around 5 kpc (around 2R e ). Using stellar population models which include the effects of variable [α/Fe] ratios, we derive metallicities, abundance ratios and ages for the stellar population of NGC 3115. We find that [α/Fe] remains fairly constant with increasing radius at around  [α/Fe]= 0.17  for the major axis but increases rapidly for the minor axis to around  [α/Fe]= 0.3  . We also find that to first order, this behaviour can be explained by a simple spheroid + disc model, where the spheroid has  [α/Fe]= 0.3  and the disc shows close to solar abundance ratios. The disc also appears considerably younger than the spheroid, having an age of around 6 Gyr compared to 12 Gyr for the spheroid. We compare these results to those previously presented for the globular cluster system of NGC 3115.  相似文献   
66.
Many magneto-hydrodynamic (MHD) models have been developed to describe the acceleration and collimation of stellar jets, in the framework of an infall/outflow process. Thanks to high angular resolution instrumentation, such as the one on-board the Hubble Space Telescope (HST), we are finally able to test observationally the proposed ideas. We present the results obtained by us from the first 0”.1 resolution spectra of the initial portion (within 100–200 AU from the source) of the outflows from visible T Tauri stars, taken with the Space Telescope Imaging Spectrograph (STIS). We obtain the jet morphology, kinematics and excitation in different velocity intervals, and we derive the jet mass and momentum fluxes. These results confirm the predictions of magneto-centrifugal models for the jet launch. Recently we have also found indications for rotation in the peripheral regions of several flows. The derived rotational motions appear to be in agreement with the expected extraction of angular momentum from the star/disk system caused by the jet, which in turn allows the star to accrete up to its final mass. Improvements to resolution are expected from observations with STIS in the ultraviolet, and with the forthcoming AMBER spectrometer to be mounted at the VLTI.  相似文献   
67.
68.
69.
70.
Physical and chemical constraints for such different planetary objects as the Earth, the Moon and meteorite parent bodies can best be satisfied by thermal history models having high initial temperatures. On the basis of thermal calculations it is suggested that the evolution of the other terrestrial planets (Mars, Venus and Mercury) was also characterized by high initial temperatures. Under these conditions, melting and, consequently, fractionation would set in at an early stage. Because of the resulting redistribution of the long-lived radioactive heat sources and the concentration of these elements in the surface layers, large-scale differentiation could be achieved by partial melting.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号