首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   2篇
  国内免费   14篇
测绘学   7篇
大气科学   16篇
地球物理   28篇
地质学   65篇
海洋学   22篇
天文学   32篇
综合类   2篇
自然地理   8篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   14篇
  2017年   5篇
  2016年   8篇
  2015年   10篇
  2014年   14篇
  2013年   5篇
  2012年   16篇
  2011年   12篇
  2010年   8篇
  2009年   8篇
  2008年   14篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
101.
New high-resolution multibeam bathymetry data recorded in 2009 in the deepest lake in the World, Lake Baikal, Siberia, enabled a better understanding of the morphology of ten known lake-bed structures—the Bolshoy, Malenki, Malyutka and Stari mud volcanoes in the South Baikal Basin, the K1–4 structures in the Selenga delta, and the Novosibirsk and St. Petersburg structures in the Central Baikal Basin—and also the discovery of 29 new lake-bed structures. These new structures are the S1, Tolstiy, mTSG and S2 in the South Baikal Basin, the P1–P4, P6–P19 and K5–K8 in the Selenga delta accommodation zone, and the C1, C3 and C4 edifices in the Central Baikal Basin. In all, 39 positive relief structures were identified and their large-scale distribution mapped. Based on their typical shape, the observation of high-reflectivity areas on side-scan sonar data records, and evidence of feeder channels on subsurface data, these structures can be classified as mud volcanoes. This has already been confirmed in other publications for the Bolshoy, Malenki and K2 structures, by the recovery of mud breccias in sediment cores. Most structures occur on or near faults and have orientations parallel with the major faults and main stress orientations in the basins, suggesting a strong structural control on the formation of the mud volcanoes. Their slopes are generally steeper than 5°, consistent with interpretation as mud cones formed by high-viscosity, stiff mud plugs. Only few structures appear to be characterised by a crater, in which case this apparent crater seems to be formed by the coalescence of several single cones, leaving a depression in the centre. Some structures have a moat, which has probably an erosional origin. Furthermore, three depressions have been found, named P5, P20 and C2, which are suggested to be pockmarks.  相似文献   
102.
The development of various volume penalization techniques for use in modeling topographical features in the ocean is the focus of this paper. Due to the complicated geometry inherent in ocean boundaries, the stair-step representation used in the majority of current global ocean circulation models causes accuracy and numerical stability problems. Brinkman penalization is the basis for the methods developed here and is a numerical technique used to enforce no-slip boundary conditions through the addition of a term to the governing equations. The second aspect to this proposed approach is that all governing equations are solved on a nonuniform, adaptive grid through the use of the adaptive wavelet collocation method. This method solves the governing equations on temporally and spatially varying meshes, which allows higher effective resolution to be obtained with less computational cost. When penalization methods are coupled with the adaptive wavelet collocation method, the flow near the boundary can be well-resolved. It is especially useful for simulations of boundary currents and tsunamis, where flow near the boundary is important. This paper will give a thorough analysis of these methods applied to the shallow water equations, as well as some preliminary work applying these methods to volume penalization for bathymetry representation for use in either the nonhydrostatic or hydrostatic primitive equations.  相似文献   
103.
In order to better understand the reactivity of plant phytoliths in soil solutions, we determined the solubility, surface properties (electrophoretic mobilities and surface charge) and dissolution kinetics of phytoliths extracted from fresh biomass of representative plant species (larch tree and elm, horsetail, fern, and four grasses) containing significant amount of biogenic silica. The solubility product of larch, horsetail, elm and fern phytoliths is close to that of amorphous silica and soil bamboo phytoliths. Electrophoretic measurements yield isoelectric point pHIEP = 0.9, 1.1, 2.0 and 2.2 for four grasses, elm, larch and horsetail phytoliths respectively, which is very close to that of quartz or amorphous silica. Surface acid–base titrations allowed generation of a 2-pK surface complexation model (SCM) for larch, elm and horsetail phytoliths. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 1  pH  8, were found to be very similar among the species, and close to those of soil bamboo phytoliths. Mechanistic treatment of all plant phytoliths dissolution rates provided three-parameters equation sufficient to describe phytoliths reactivity in aqueous solutions:R(mol/cm2/s)=6?10?16?aH++5.0?10?18+3.5?10?13?aOH?0.33Alternatively, the dissolution rate dependence on pH can be modeled within the concept of surface coordination theory assuming the rate proportional to concentration of > SiOH2+, > SiOH0 and > SiO? species. In the range of Al concentration from 20 to 5000 ppm in the phytoliths, we have not observed any correlation between their Al content and solubility, surface acid–base properties and dissolution kinetics.It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ~ 3. Mass-normalized dissolution rates are similar among all four types of plant species studied and these rates are an order of magnitude higher than those of typical soil clay minerals. The minimal half life time of larch and horsetail phytoliths in the interstitial soil solution ranges from 10–12 years at pH = 2–3 to < 1 year at pH above 6, comparable with mean residence time of phytoliths in soil from natural observations.  相似文献   
104.
Oleg Abramov  John R. Spencer 《Icarus》2008,195(1):378-385
A variety of recent resurfacing features have been observed on Europa, which may produce thermal anomalies detectable by a future mission. However, the likelihood of such a detection depends on their size and lifetimes. The results of this numerical study suggest that the lifetime of a thermal anomaly associated with the emplacement of 100 m of water onto the surface of Europa is several hundred years, and ∼10 years for 10 m of water. If warm ice is emplaced on the surface instead of liquid water, these lifetimes decrease by up to a factor of two. Exploration of model parameters indicates that a thin insulating surface layer can double thermal anomaly lifetimes, anomalies emplaced at a latitude of 80° can remain detectable nearly a factor of two longer than those at equatorial latitudes, and anomalies on the night side can remain detectable for up to ∼20% longer than those on the day side. High temperatures are very short-lived as the surface ice cools very rapidly to below 200 K due to sublimation cooling. Assuming steady-state resurfacing, the number of detectable thermal anomalies associated with the emplacement of 100 m of water would be on the order of 10 if the typical resurfacing area is 15 km2. If recent resurfacing is dominated by chaos regions with typical areas of 100 to 1000 km2 and lifetimes of 1000 to 4000 years, the number of detectable thermal anomalies would be on the order of 1 to 10.  相似文献   
105.
The signal of recent global warming has been detected in meteorological records, borehole temperatures and by several indirect climate indicators. Anthropogenic warming continues to evolve, and various methods are used to study and predict the changes of the global and regional climate. Results derived from GCMs, palaeoclimate reconstructions, and regional climate models differ in detail. An empirical model could be used to predict the spatial pattern of the near-surface air temperature and to narrow the range of regional uncertainties. The idea behind this approach is to study the correlations between regional and global temperature using century-scale meteorological records, and to evaluate the regional pattern of the future climate using regression analysis and the global-mean air temperature as a predictor. This empirical model, however, is only applicable to those parts of the world where regional near-surface air temperature reacts linearly to changes of the global thermal regime. This method and data from a set of approximately 2000 weather stations with continuous century-scale records of the monthly air temperature was applied to develop the empirical map of the regional climate sensitivity. Data analysis indicated that an empirical model could be applied to several large regions of the World, where correlations between local and global air temperature are statistically significant. These regions are the western United States, southern Canada, Alaska, Siberia, south-eastern Asia, southern Africa and Australia, where the correlation coefficient is typically above 0.9. The map of regional climate sensitivity has been constructed using calculated coefficients of linear regression between the global-mean and regional annual air temperature. As long as the correlations between the local and global air temperature are close to those in the last several decades, this map provides an effective tool to scale down the projection of the global air temperature to regional level. According to the results of this study, maximum warming at the beginning of the 21st century will take place in the continental parts of North America and Eurasia. The empirical regional climate sensitivity defined here as the response of the mean-annual regional temperature to 1 °C global warming was found to be 5–6 °C in southern Alaska, central Canada, and over the continental Siberia, 3–4 °C on the North Slope of Alaska and western coast of the U.S.A., and 1–2 °C in most of the central and eastern U.S.A. and eastern Canada. Regions with negative sensitivity are located in the southeastern U.S.A., north-western Europe and Scandinavia. The local tendency towards cooling, although statistically confirmed by modern data, could, however, change in the near future.  相似文献   
106.
 Harmonic coefficients of the 2nd degree are separated into the invariant quantitative (the 2nd-degree variance) and the qualitative (the standardized harmonic coefficients) characteristics of the behavior of the potential V 2(t). On this basis the evolution of the Earth's dynamical figure is described as a solution of the time-dependent eigenvalues–eigenvectors problem in the canonical form. Such a canonical quadratic form is defined only by temporal variations of the harmonic coefficients and always remains finite, even within an infinite time interval. An additional condition for the correction or the determination of temporal variations of the 2nd degree is obtained. Temporal variations of the fully normalized sectorial harmonic coefficients are estimated in addition to ˙Cˉ 20, ˙Cˉ 21, and ˙Sˉ 21 of the EGM96 gravity model. In addition, a non-linear hyperbolic model for 2m (t), 2m (t) is constructed. The trigonometric form of the hyperbolic model leads to the consideration of the potential V 2(ψ) instead of V 2(t) within the closed interval −π/2≤ψ≤+π/2. Thus, it is possible to evaluate the global trend of V 2(t), the Earth's principal axes and the differences of the moments of inertia within the whole infinite time interval. Received: 25 September 1998 / Accepted: 28 June 2000  相似文献   
107.
On tourmaline     
The first part of this paper presents chemical analyses and physical properties for 12 tourmalines of varying color, 10 samples from Mozambique, one from Afghanistan and one from Madagascar. The data are summarized in Tables 1–3. The second part reviews the isomorphism in the tourmaline group on the basis of data gathered from the literature. Plots of c0 against a0 for 198 X-rayed tourmalines and of (Fe, Mn, Mg, Ti) against the unit cell volume of 57 analyzed and X-rayed tourmalines supplement Epprecht's review.  相似文献   
108.
A global, flux-corrected climate model is employed to predict the surface wind stress and associated wind-driven oceanic circulation for climate states corresponding to a doubling and quadrupling of the atmospheric CO2 concentration in a simple 1% per year CO2 increase scenario. The model indicates that in response to CO2 increase, the position of zero wind stress curl in the mid-latitudes of the Southern Hemisphere shifts poleward. In addition, the wind stress intensifies significantly in the mid-latitudes of the Southern Hemisphere. As a result, the rate of water circulation in the subpolar meridional overturning cell in the Southern Ocean increases by about 6 Sv (1 Sv=106 m3 s−1) for doubled CO2 and by 12 Sv for quadrupled CO2, implying an increase of deep water upwelling south of the circumpolar flow and an increase of Ekman pumping north of it. In addition, the changes in the wind stress and wind stress curl translate into changes in the horizontal mass transport, leading to a poleward expansion of the subtropical gyres in both hemispheres, and to strengthening of the Antarctic Circumpolar Current. Finally, the intensified near-surface winds over the Southern Ocean result in a substantial increase of mechanical energy supply to the ocean general circulation.  相似文献   
109.
The Caspian Sea (CS), the world's largest inland sea, may also be considered as large-scale limnic system. Due to strong fluctuations of its water level during the 20th century and the flooding of vast areas in a highly vulnerable coastal zone, economic and environmental risk potentials have to be considered. Since the major water input into the CS is attributed to the Volga river, the understanding of its long-term flow process is necessary for an appropriate risk assessment for the CS and its coastal area. Therefore, a top-down approach based on statistical analyses of long-term Volga flow series is pursued. For the series of annual mean flow (MQ) of the Volga river basin during the 20th century, a complex oscillation pattern was identified. Analyses for multiple gauges in the Volga river basin and Eurasian reference basins revealed that this oscillation pattern resulted from the superposition of oscillations with periods of ∼30 years (MQ) in the western part of the Volga river basin, and ∼14 years (flow volume of snowmelt events) and ∼20 years (flow volume of summer and autumn) in the eastern part of the Volga river basin (Kama river basin). Almost synchronous minima or maxima of these oscillations occurred just in the periods of substantial changes of the Caspian Sea level (CSL). It can thus be assumed that the described mechanism is fundamental for an understanding of the CSL development during the 20th century. Regarding the global climate change, it is still difficult to predict reliably the development of the CSL for the 21st century. Consequently, we suggest an ongoing, interdisciplinary research co-operation among climatology, hydrology, hydraulics, ecology and spatial data management.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号