首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   17篇
  国内免费   3篇
测绘学   1篇
大气科学   26篇
地球物理   94篇
地质学   78篇
海洋学   74篇
天文学   63篇
综合类   2篇
自然地理   12篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   12篇
  2017年   9篇
  2016年   10篇
  2015年   10篇
  2014年   21篇
  2013年   15篇
  2012年   6篇
  2011年   14篇
  2010年   13篇
  2009年   8篇
  2008年   10篇
  2007年   16篇
  2006年   15篇
  2005年   10篇
  2004年   15篇
  2003年   10篇
  2002年   18篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1975年   1篇
  1974年   4篇
  1973年   5篇
  1970年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
341.
A simple theory for a constitutive law for steady state dynamic friction in granular matter is presented. Starting from the energy balance equation together with the kinetics of grains, the energy dissipation rate is estimated, which directly leads to a constitutive law. The result indicates that a system of lower density is stronger than a system of higher density, albeit somewhat counterintuitive. This is a consequence of the fact that the grain rearrangement, which causes energy dissipation, is more frequent in a system of lower density. Thus, the velocity-strengthening nature of granular friction is naturally explained by the negative shear-rate dependence of the density. The present theory also qualitatively explains the experimental observation that a system of smaller layer thickness tends to be velocity-weakening.  相似文献   
342.
耦合融雪的分布式流域"降雨-径流"数值模型   总被引:1,自引:0,他引:1       下载免费PDF全文
针对中国对耦合融雪的"降雨-径流"过程数值计算模型方面的研究较少,本文联合应用能量平衡方程及运动波理论的基础方程式,结合GIS技术构建分布式流域耦合融雪的"降雨-径流"数值计算模型,并应用流域实测资料进行了有效性验证。研究结果表明:在不考虑融雪条件下,实测流量与计算结果之间存在着较大的误差;在考虑融雪条件下,实测流量与计算结果之间的误差在基准允许范围之内(小于3%);在积雪与融雪区,对流域"降雨-径流"过程的数值计算须考虑融雪。该研究为积雪融雪区提供了一种耦合融雪的"降雨-径流"过程数值计算的新方法。  相似文献   
343.
Development of ICL landslide teaching tools   总被引:1,自引:1,他引:0  
Capacity development is important and urgently needed for landslide disaster risk reduction. This is especially so in developing countries where mountain and urban development is accelerating most rapidly, including construction of highways and railways and residential complexes. However, effective tools to teach practical landslide risk reduction knowledge and skills are not available. Therefore, International Consortium on Landslides (ICL) has decided to compile a collection of landslide teaching tools (Sassa et al. 2013) to provide teaching materials to ICL members and other landslide teaching entities to assist in education of university students, local government officers, staff in nongovernmental organizations, and the public. The teaching toolbox contains five parts: (1) mapping and site prediction; (2) monitoring and early warning; (3) testing and numerical simulation; (4) risk management; and (5) country practices and case studies. The teaching toolbox contains three types of tools: (1) TXT tools consisting of original texts with figures; (2) PDF tools consisting of already published reference papers, manuals, guidelines, and others; and (3) PPT tools consisting of PowerPoint® files made for lectures. The initial TXT tools have been published as a full color booklet (405 pages). The PDF tools and PPT tools are contained in a CD. The basic concept and a list of contents of the ICL landslide teaching tools are introduced in this article.  相似文献   
344.
The objectives of this study were to examine the runoff characteristics and to estimate water budget at the wind–water erosion crisscross region on the Loess Plateau of China. A small catchment known as Liudaogou that has representative meteorological and hydrological conditions of the wind–water erosion crisscross region was chosen as the study location. A numerical model for rainfall-runoff was developed and verified; rainfall-runoff calculation for 5 years (2005–2009) was performed. The observed data and numerical result of the surface runoff were used for evaluating runoff characteristics and estimating the annual water budget. Runoff rate was proportional to average intensity of rain. Even though rainfall duration was for few minutes, surface runoff was generated by intensity of more than 2.6 mm × 5 min?1, when rainfall duration exceeded 10 h; surface runoff was generated by an intensity of 0.6 mm × 5 min?1, while annual runoff rate was 10–15 %. The unit area of 1 km2 was adopted as the index area for estimating annual water budget. Runoff, evapotranspiration, variation of water storage, and habitant water consumption accounted for 20.4, 75.6, 0, and 4 % of the total annual precipitation, respectively. Results of this study provide the basis for further research on hydrology, water resources, and sustainable water development and utilization at the wind–water erosion crisscross region on the northern Loess Plateau where annual water resources are relatively deficient.  相似文献   
345.
Temporary enhancement of the nutrient concentrations in the coastal area was observed after heavy rain in the central Seto Inland Sea in July 2012. After passage of a stationary front accompanied by heavy rain, the river outflow was enhanced, and low salinity and high nutrient concentrations were detected near the mouths of rivers. The offshore salinity and nutrients increased and decreased, respectively, which suggested that a snapshot event, such as heavy rain, could influence the short-term variation of the coastal marine environmental conditions, such as the salinity and nutrient distributions.  相似文献   
346.
The Hawaiian Lee Countercurrent (HLCC) is an eastward surface current flowing against the broad westward flow of the North Pacific subtropical circulation. Analyses of satellite altimeter data over 16 years revealed that the HLCC is characterized by strong interannual variations. The strength and meridional location of the HLCC axis varied significantly year by year. The eastward velocity of the HLCC was higher when the location of the axis was stable. Mechanisms for the interannual variations were explored by analyses of the altimeter data and results from a simple baroclinic model. The interannual variations in the strength of the HLCC did not correlate with those of the wind stress curl (WSC) dipole formed on the leeward side of the Hawaii Islands, although the WSC dipole has been recognized as the generation mechanism of the HLCC. Meridional gradients of the sea surface height anomaly (SSHA) across the HLCC generated by baroclinic Rossby waves propagating westward from the east of the Hawaii Islands were suggested as a possible mechanism for the interannual variations in the HLCC. The spatial patterns in the observed SSHAs were reproduced by a linear baroclinic Rossby wave model forced by wind fields from a numerical weather prediction model. Further analysis of the wind data suggested that positive and negative anomalies of WSC associated with changes in the trade winds in the area east of the Hawaii Islands are a major forcing for generating SSHAs that lead to the HLCC variations with a time lag of about 1 year.  相似文献   
347.
Protoatmospheres and surface environment of terrestrial protoplanets during the oligarchic accretion phase and the giant impacts phase are discussed from theoretical points of view. Mars-sized protoplanets form during the stage of the oligarchic growth. Since protoplanets are formed from more or less ‘local’ planetesimals, the surface environment of the accreting protoplanets depends on availability of volatile material in planetesimals. Even if no volatile-bearing planetesimals are available, a gravitationary captured solar composition atmosphere is formed during accretion. In such cases the surface temperature is always kept under the melting temperature of mantle silicate and only a subsurface magma ocean is formed. Core formation proceeds under dry conditions, and volatile elements are not partitioned into metallic iron. Accretion of water-bearing planetesimals results in impact degassing. A surface hydrous magma ocean forms in response to the thermal blanketing effect of the proto-atmosphere. Then, some volatile materials dissolve into the magma ocean. If we consider reaction with metallic iron, the proto-atmosphere is likely to be rich in hydrogen. In addition, a large amount of hydrogen may be partitioned into metallic iron under high pressure, and delivered to the core. In the stage of giant impacts, both dry and water-bearing protoplanets collide on the proto-Earth. Substantial amount of proto-atmosphere (including water vapor) survives giant impacts. Moreover, giant impacts on protoplanets with oceans result in relative concentration of water against other gases.  相似文献   
348.
We present lightcurve observations and multiband photometry for 107P/Wilson-Harrington using five small- and medium-sized telescopes. The lightcurve has shown a periodicity of 0.2979 day (7.15 h) and 0.0993 day (2.38 h), which has a commensurability of 3:1. The physical properties of the lightcurve indicate two models: (1) 107P/Wilson-Harrington is a tumbling object with a sidereal rotation period of 0.2979 day and a precession period of 0.0993 day. The shape has a long axis mode (LAM) of L1:L2:L3 = 1.0:1.0:1.6. The direction of the total rotational angular momentum is around λ = 310°, β = −10°, or λ = 132°, β = −17°. The nutation angle is approximately constant at 65°. (2) 107P/Wilson-Harrington is not a tumbler. The sidereal rotation period is 0.2979 day. The shape is nearly spherical but slightly hexagonal with a short axis mode (SAM) of L1:L2:L3 = 1.5:1.5:1.0. The pole orientation is around λ = 330°, β = −27°. In addition, the model includes the possibility of binary hosting. For both models, the sense of rotation is retrograde. Furthermore, multiband photometry indicates that the taxonomy class of 107P/Wilson-Harrington is C-type. No clear rotational color variations are confirmed on the surface.  相似文献   
349.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   
350.
A gigantic rapid landslide claiming over 1,000 fatalities was triggered by rainfalls and a small nearby earthquake in the Leyte Island, Philippines in 2006. The disaster presented the necessity of a new modeling technology for disaster risk preparedness which simulates initiation and motion. This paper presents a new computer simulation integrating the initiation process triggered by rainfalls and/or earthquakes and the development process to a rapid motion due to strength reduction and the entrainment of deposits in the runout path. This simulation model LS-RAPID was developed from the geotechnical model for the motion of landslides (Sassa 1988) and its improved simulation model (Sassa et al. 2004b) and new knowledge obtained from a new dynamic loading ring shear apparatus (Sassa et al. 2004a). The examination of performance of each process in a simple imaginary slope addressed that the simulation model well simulated the process of progressive failure, and development to a rapid landslide. The initiation process was compared to conventional limit equilibrium stability analyses by changing pore pressure ratio. The simulation model started to move in a smaller pore pressure ratio than the limit equilibrium stability analyses because of progressive failure. However, when a larger shear deformation is set as the threshold for the start of strength reduction, the onset of landslide motion by the simulation agrees with the cases where the factor of safety estimated by the limit equilibrium stability analyses equals to a unity. The field investigation and the undrained dynamic loading ring shear tests on the 2006 Leyte landslide suggested that this landslide was triggered by the combined effect of pore water pressure due to rains and a very small earthquake. The application of this simulation model could well reproduce the initiation and the rapid long runout motion of the Leyte landslide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号