首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   25篇
  国内免费   7篇
测绘学   44篇
大气科学   74篇
地球物理   206篇
地质学   256篇
海洋学   122篇
天文学   83篇
综合类   3篇
自然地理   86篇
  2022年   8篇
  2021年   13篇
  2020年   11篇
  2019年   13篇
  2018年   32篇
  2017年   16篇
  2016年   23篇
  2015年   13篇
  2014年   30篇
  2013年   53篇
  2012年   38篇
  2011年   41篇
  2010年   55篇
  2009年   56篇
  2008年   48篇
  2007年   42篇
  2006年   23篇
  2005年   26篇
  2004年   26篇
  2003年   18篇
  2002年   32篇
  2001年   11篇
  2000年   22篇
  1999年   24篇
  1998年   21篇
  1997年   16篇
  1996年   20篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   3篇
  1991年   8篇
  1990年   4篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   8篇
  1983年   8篇
  1982年   4篇
  1981年   7篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   5篇
  1971年   4篇
  1970年   4篇
排序方式: 共有874条查询结果,搜索用时 15 毫秒
871.
The paper considers the effects of wave age and air stability on the whitecap coverage at sea. This is made by using the logarithmic mean wind velocity profile including a stability function as well as adopting a recent wave age dependent sea surface roughness formula. The results are valid for wind waves in local equilibrium with the steady wind. Examples of results demonstrate clear effects of wave age and air stability on the whitecap coverage. Comparisons are also made with field measurements by Sugihara et al. [Sugihara, Y., et al., 2007. Variation of whitecap coverage with wave-field conditions. J. Mar. Syst. 66, 47–60], representing unstable air stability conditions. Although the data basis is limited, the wave age independent Charnock sea roughness based predictions capture the main features of the observed whitecap coverage, suggesting a stronger dependence on air stability than on wave age in the data.  相似文献   
872.
A method to reduce the spin-up time of ocean models   总被引:2,自引:2,他引:0  
The spin-up timescale in large-scale ocean models, i.e., the time it takes to reach an equilibrium state, is determined by the slow processes in the deep ocean and is usually in the order of a few thousand years. As these equilibrium states are taken as initial states for many calculations, much computer time is spent in the spin-up phase of ocean model computations. In this note, we propose a new approach which can lead to a very large reduction in spin-up time for quite a broad class of existing ocean models. Our approach is based on so-called Jacobian–Free Newton–Krylov methods which combine Newton’s method for solving non-linear systems with Krylov subspace methods for solving large systems of linear equations. As there is no need to construct the Jacobian matrices explicitly the method can in principle be applied to existing explicit time-stepping codes. To illustrate the method we apply it to a 3D planetary geostrophic ocean model with prognostic equations only for temperature and salinity. We compare the new method to the ‘ordinary’ spin-up run for several model resolutions and find a considerable reduction of spin-up time.  相似文献   
873.
Rock physical properties, like velocity and bulk density, change as a response to compaction processes in sedimentary basins. In this study it is shown that the velocity and density in a well defined lithology, the shallow marine Etive Formation from the northern North Sea increase with depth as a function of mechanical compaction and quartz cementation. Physical properties from well logs combined with experimental compaction and petrographic analysis of core samples shows that mechanical compaction is the dominant process at shallow depth while quartz cementation dominates as temperatures are increased during burial. At shallow depths (<2000–2500 m, 70–80 °C) the log derived velocities and densities show good agreement with results from experimental compaction of loose Etive sand indicating that effective stress control compaction at these depths/temperatures. This indicates that results from experimental compaction can be used to predict reservoir properties at burial depths corresponding to mechanical compaction. A break in the velocity/depth gradient from about 2000 m correlates with the onset of incipient quartz cementation observed from petrographic data. The gradient change is caused by a rapid grain framework stiffening due to only small amounts of quartz cement at grain contacts. At temperatures higher than 70–80 °C (2000–2500 m) the velocities show a strong correlation with quartz cement amounts. Porosity reduction continues after the onset of quartz cementation showing that sandstone diagenesis is insensitive to effective stress at temperatures higher than 70–80 °C. The quartz cement is mainly sourced from dissolution at stylolites reflected by the fact that no general decrease in intergranular volume (IGV) is observed with increasing burial depth. The IGV at the end of mechanical compaction will be important for the subsequent diagenetic development. This study demonstrates that mechanical compaction and quartz cementation is fundamentally different and this needs to be taken into consideration when analyzing a potential reservoir sandstone such as the Etive Formation.  相似文献   
874.
The feasibility of mangrove leaves as a full diet for sesarmid crabs has been questioned for decades. Since these leaves are nitrogen-poor, sesarmids probably obtain nitrogen from other sources to sustain growth. The aim of this study was to assess the food partitioning of the sesarmid species Neoepisesarma versicolor with emphasis on nitrogen allocation. The preference for animal tissue when crabs were pre-fed diets of different nitrogen content was determined in the laboratory. Furthermore, the possible in situ diet composition of N. versicolor was established from carbon and nitrogen stable isotope signature (δ13C and δ15N) of freshly caught individuals and their potential food sources, using a concentration-dependent mixing model. N. versicolor showed significantly higher feeding preferences for fish meat when pre-fed leaf material without than with access to meat, indicating that this crab species can meet its nitrogen demand by ingesting animal tissue. The stable isotope mixing model based on in situ materials suggests that the diet of N. versicolor consists of ∼60% leaves in terms of biomass, leaving ∼40% for other sources such as animal tissue and benthic microorganisms. The biomass contribution from animal tissues, in form of e.g. other crustaceans and fish carcasses, was found to account for ∼15%. Despite the relative low biomass fraction, animal food sources may contribute with up to half of the nitrogen in the diet of N. versicolor. The quantity of ingested sediment most likely exceeds that of animal tissues. However, due to the low concentration of assimilable microalgae and other microorganism, we propose that sediment associated sources are less important as a nitrogen source for N. versicolor than hitherto presumed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号