首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   13篇
地质学   15篇
海洋学   4篇
天文学   18篇
自然地理   8篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1989年   3篇
  1987年   4篇
  1986年   3篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1972年   2篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
51.
The Chi-Chi 1999 earthquake ruptured the out-of-sequence Chelungpu Thrust Fault (CTF) in the fold-and-thrust belt in Western Central Taiwan. An important feature of this rupture is that the calculated slip increases approximately linearly in the SE–NW convergence plate direction from very little at its deeper edge to a maximum near the surface. We propose here a new explanation for this co-seismic slip distribution based on the study of both stress and displacement over the long-term as well as over a seismic cycle. Over the last 0.5 My, the convergence rate in the mountain front belt is accommodated by the frontal Changhua Fault (Ch.F), the CTF and the Shuangtung Fault (Sh.F). Based on previously published balanced cross sections, we estimate that the long-term slip of the Ch.F and of the CTF accommodate 5–30% and 30–55% of the convergence rate, respectively. This long-term partitioning of the convergence rate and the modeling of inter-seismic and post-seismic displacements suggest that the peculiar linear co-seismic slip distribution is accounted for by a combination of the effect of the obliquity of the CTF to the direction of inter-seismic loading, and of increasing aseismic creep on the deeper part of the Ch.F and CTF. Many previous interpretations of this slip distribution have been done including the effects of material properties, lubrication, site effect, fault geometry and dynamic waves. The importance of these processes with respect to the effects proposed here is still unknown. Taking into account the dip angle of the CTF, asperity dynamic models have been proposed to explain the general features of co-seismic slip distribution. In particular, recent works show the importance of heterogeneous spatial distribution of stress prior to the Chi-Chi earthquake. Our analysis of seismicity shows that previous large historic earthquakes cannot explain the amplitude of this heterogeneity. Based on our approach, we rather think that the high stress in the northern part of the CTF proposed by Oglesby and Day [Oglesby, D.D., Day, S.M., 2001. Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake. Bull. Seismol. Soc. Am. 91, 1099–1111] reflects the latitudinal variation of inter-seismic coupling due to the obliquity of the CTF.  相似文献   
52.
The western boundary of the Philippine Sea (PH) Plate in the Philippines and eastern Indonesia corresponds to a wide deformation zone that includes the stretched continental margin of Sundaland, the Philippine Mobile Belt (PMB), extending from Luzon to the Molucca Sea, and a mosaic of continental blocks around the PH/Australia/Sunda triple junction. The GPS GEODYSSEA data are used to decipher the present kinematics of this complex area. In the Philippines, the overall scheme is quite simple: two opposing rotations on either side of the left-lateral Philippine Fault, clockwise to the southwest and counterclockwise to the northeast, transfer 55 per cent of the PH/Sundaland convergence from the Manila Trench to the northwest to the Philippine Trench to the southeast. Further south, 80 per cent of the PH/Sunda convergence is absorbed in the double subduction system of the Molucca Sea and less than 20 per cent along both continental margins of northern Borneo. Finally, within the triple junction area between the Sundaland, PH and Australia plates, from Sulawesi to Irian Jaya, preferential subduction of the Celebes Sea induces clockwise rotation of the Sulu block, which is escaping toward the diminishing Celebes Sea oceanic space from the eastward-advancing PH Plate. To the south, we identify an undeformed Banda block that rotates counterclockwise with respect to Australia and clockwise with respect to Sundaland. The kinematics of this block can be defined and enable us to compute the rates of southward subduction of the Banda block within the Flores Trench and of eastward convergence of the Makassar Straits with the Banda block. The analysis made in this paper confirms that this deformation is compatible with the eastward motion of Sundaland with respect to Eurasia determined by the GEODYSSEA programme but is not compatible with the assumption that Sundaland belongs to Eurasia, as was often assumed prior to this study.  相似文献   
53.
54.
East Asia plate tectonics since 15 Ma: constraints from the Taiwan region   总被引:4,自引:0,他引:4  
15 Ma ago, a major plate reorganization occurred in East Asia. Seafloor spreading ceased in the South China Sea, Japan Sea, Taiwan Sea, Sulu Sea, and Shikoku and Parece Vela basins. Simultaneously, shear motions also ceased along the Taiwan–Sinzi zone, the Gagua ridge and the Luzon–Ryukyu transform plate boundary. The complex system of thirteen plates suddenly evolved in a simple three-plate system (EU, PH and PA). Beneath the Manila accretionary prism and in the Huatung basin, we have determined magnetic lineation patterns as well as spreading rates deduced from the identification of magnetic lineations. These two patterns are rotated by 15°. They were formed by seafloor spreading before 15 Ma and belonged to the same ocean named the Taiwan Sea. Half-spreading rate in the Taiwan Sea was 2 cm/year from chron 23 to 20 (51 to 43 Ma) and 1 cm/year from chron 20 (43 Ma) to 5b (15 Ma). Five-plate kinematic reconstructions spanning from 15 Ma to Present show implications concerning the geodynamic evolution of East Asia. Amongst them, the 1000-km-long linear Gagua ridge was a major plate boundary which accommodated the northwestward shear motion of the PH Sea plate; the formation of Taiwan was driven by two simple lithospheric motions: (i) the subduction of the PH Sea plate beneath Eurasia with a relative westward motion of the western end (A) of the Ryukyu subduction zone; (ii) the subduction of Eurasia beneath the Philippine Sea plate with a relative southwestward motion of the northern end (B) of the Manila subduction zone. The Luzon arc only formed south of B. The collision of the Luzon arc with Eurasia occurred between A and B. East of A, the Luzon arc probably accreted against the Ryukyu forearc.  相似文献   
55.
Two contrasted types of structures have been recognized in peridotites from ophiolites and from the oceanic environment. The first one, typical of high-temperature/moderate-stress conditions, is observed in the upper part of ophiolitic peridotites and has been ascribed to plastic flow in an oceanic ridge environment. The second one, typical of moderate-temperature/high-stress conditions, is more specially dealt with here. It is printed in the peridotites above the basal metamorphic aureole found in many ophiolites. The strain increases downward over 1–2 km to produce peridotite mylonites at the contact with the metamorphic aureole. Similarities with rocks from trench and island arc environments suggest ascribing this deformation in ophiolites to a trench environment. We propose that shear fracturing in a young oceanic lithosphere is initiated by the compressive elastic stress in its lower part which is produced by bending of the subducted plate. An externally applied compressive stress is responsible for subsequent overthrusting of the fractured lithosphere. This interpretation is in good agreement with the available geophysical data on young subducted plates and with the physical data on ophiolitic peridotites.  相似文献   
56.
During the French-Japanese Kaiko project, Seabeam, seismic and submersible observations were made in the eastern part of the Nankai subduction zone, close to the area of collision between the Izu-Bonin island arc and the Japan margin. The most prominent feature is the Zenisu Ridge, an elongated relief of the Philippine Sea plate running parallel to the Trench. Magnetic anomalies indicate that the crust of the Zenisu Ridge is a part of the Shikoku oceanic basin formed in the Early Miocene, 23 Ma ago and presumably uplifted at a later stage. Structural analysis of seismic data and diving observations lead us to interpret the superficial structure as being due to compressive tectonics. Mapping the acoustic basement reveals that the southeastern flank of the ridge is bounded by a double thrust, both segments being of equal magnitude (vertical offset about 1 to 1.5 km). Geophysical data support the hypothesis of a main thrust cutting through most of the lithosphere and flattening at depth. The overall structure of the surrounding area reveals a compressive deformation zone widening toward the east, the magnitude of the compressive deformation decreasing westward as well as southward of the Zenisu Ridge.  相似文献   
57.
58.
59.
The Paleoproterozoic domain of the Ivory Coast lies in the central part of the West African Craton (WAC) and is mainly constituted by TTG, greenstones, supracrustal rocks and leucogranites. A compilation of metamorphic and radiometric data highlights that: i) metamorphic conditions are rather homogeneous through the domain, without important metamorphic jumps, ii) HP-LT assemblages are absent and iii) important volumes of magmas emplaced during the overall Paleoproterozoic orogeny suggesting the occurrence of long-lived rather hot geotherms. Results of the structural analysis, focused on three areas within the Ivory Coast, suggest that the deformation is homogeneous and distributed through the Paleoproterozoic domain. In details, results of this study point out the long-lived character of vertical movements during the Eburnean orogeny with a two folds evolution. The first stage is characterized by the development of “domes and basins” geometries without any boundary tectonic forces and the second stage is marked by coeval diapiric movements and horizontal regional-scale shortening. These features suggest that the crust is affected by vertical movements during the overall orogeny. The Eburnean orogen can then be considered as an example of long-lived Paleoproterozoic “weak type” orogen.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号