首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26645篇
  免费   488篇
  国内免费   1268篇
测绘学   1608篇
大气科学   2252篇
地球物理   5158篇
地质学   12528篇
海洋学   1318篇
天文学   1754篇
综合类   2292篇
自然地理   1491篇
  2024年   10篇
  2023年   39篇
  2022年   103篇
  2021年   112篇
  2020年   106篇
  2019年   107篇
  2018年   4871篇
  2017年   4129篇
  2016年   2678篇
  2015年   351篇
  2014年   228篇
  2013年   157篇
  2012年   1108篇
  2011年   2864篇
  2010年   2130篇
  2009年   2425篇
  2008年   1989篇
  2007年   2441篇
  2006年   134篇
  2005年   273篇
  2004年   473篇
  2003年   483篇
  2002年   364篇
  2001年   147篇
  2000年   120篇
  1999年   61篇
  1998年   80篇
  1997年   57篇
  1996年   36篇
  1995年   42篇
  1994年   29篇
  1993年   28篇
  1992年   34篇
  1991年   18篇
  1990年   10篇
  1989年   18篇
  1988年   9篇
  1987年   9篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   28篇
  1980年   29篇
  1979年   7篇
  1978年   8篇
  1976年   9篇
  1975年   5篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
养殖对虾病毒性疾病的细菌并发症防治研究   总被引:1,自引:0,他引:1  
苏国成  陈金翠 《台湾海峡》1996,15(2):200-204
本文研究报道了发病对虾肝胰腺分离菌物敏感性,采用防台细菌人工感染方法进行药物饲料的筛选,在实验室及养殖池中进行药物饲料的防治效果试验。结果表明,在对虾病毒流行期间,采用药物饲料可有效防止对虾爆发性大量死亡,提高对虾存活率。  相似文献   
152.
SeaMARC II side-scan images, bathymetry, and single-channel seismic reflection data along the southern Peru—northern Chile forearc area between 16° and 23° S reveal a complex region of morpho-structural, submarine drainage and depression patterns. In the subducting plate area, the NW—SE trending primary normal fault system represented by trench-paralleled scarps was incipiently formed as the Nazca Plate was bent in the outer edge and further intensified as the plate approached the trench. The NE—SW trending secondary normal fault system that consists of discontinuous and smaller faults, usually intersect the primary trench-paralleled fault system. Similar to the Nazca Plate, the overriding continental plate also shows two major NW—SE and NE—SW trending fault systems represented by fault scarps or narrow elongated depressions.The submarine drainage systems represented by a series of canyon and channel courses appear to be partly controlled by the faults and exhibit a pattern similar to the onshore drainage which flows into the central region of the coastal area. Two large depressions occurring along the middle—upper slope areas of the continental margin are recognized as collapse and slump that perhaps are a major result of increased slope gradient. The subsidence of the forearc area in the southern Peru—northern Chile Continental Margin is indicated by: a) drainage systems flowing into the central region, b) the slope collapse and slumps heading to the central region, c) the deepening of the trench and inclining of the lower slope terrace to the central region, and d) submerging of the upper-slope ridge and the Peru—Chile Coast Range off the Arica Bight area.The subsidence of the forearc area in the southern Perunorthern Chile margin is probably attributed to a subduction erosion which causes wearing away and removal of the rock and sedimentary masses of the overriding plate as the Nazca Plate subducts under the South American Plate.  相似文献   
153.
Based on the recent research results on dry and wet deposition of nutrient elements and sulphate,we estimate the atmospheric flux of nutrient elements and sulphate to the southern Yellow Sea and the East China Sea in each season.The results suggest that the concentrations of nutrient elements and sulphate in aerosol and precipitation show an apparent seasonal cycle with the maximum values in winter and the minimum values in summer.Depositions of nitrate and sulphate are dominated by wet deposition,while the deposition for phosphate is mainly dry deposition.Moreover,compared with the riverine inputs,the atmospheric deposition may be the main source of dissolved inorganic nutrients in the southern Yellow Sea and the East China Sea.  相似文献   
154.
This paper examines the mechanism controlling the short time-scale variation of sea ice cover over the Southern Ocean. Sea ice concentration and ice velocity datasets derived from images of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) are employed to reveal this mechanism. The contribution of both dynamic and thermodynamic processes to the change in ice edge location is examined by comparing the meridional velocity of ice edge displacement and sea ice drift. In the winter expansion phase, the thermodynamic process of new ice production off the ice edge plays an important role in daily advances of ice cover, whereas daily retreats are mostly due to southward ice drift. On the other hand, both advance and retreat of ice edges in the spring contraction phase are mostly caused by the dynamic process of the ice drift. Based on the above mechanism and the linear relation between the degree of ice production at the ice edge and northward wind speed, the seasonal advance of ice cover can be roughly reproduced using the meridional velocity of ice drift at the ice edge.  相似文献   
155.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   
156.
157.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   
158.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
159.
Odanam Satoe, a subtidal, tide-dominated sand body in the Yellow Sea, Korea, is linear in plan and asymmetrical in cross-section. It consists of fine- to medium-grained, well-sorted subangular sand. Bedforms consist of high-amplitude (1–2 m) sandwaves on the lower flanks of the gentler-sloping bar surface, and medium-amplitude (0.5-1 m) sandwaves on the sand body trough adjoining the steeper face, the bar crest and shallower parts of the gently sloping bar surface. Bedforms are absent on the relatively steeper bar surface, which is characterized by 2° slopes. Bedform orientation on the gentler slope is oblique by 30° to the bar crest, parallel to the sand-body crest on the crest itself, and opposite to the steeper sand-body face in the trough below the steeper slope of the bar.Bottom current velocity data show that tidal currents are semi-rotary with a flood time—velocity asymmetry over the gentler slope, and ebb time—velocity asymmetry over the steeper slope during most of the tidal cycle. Tidal-current flow parallels bar elongation over the steeper slope, whereas over the gentler slope, tidal-current flow is directed at 30° to the bar crest and changes to normal to the crest one hour prior to low tide. Bedform orientation mapped with side-scan sonar shows agreement with these flow directions.Sand dispersal around the sand body is controlled by time—velocity asymmetry and partial rotary flow directions of tidal currents. This circulation causes not only a trapezoidal mode of grain dispersal, but also westerly migration of the sand body documented from comparative bathymetric surveys in 1964 and 1980.  相似文献   
160.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号