首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   10篇
  国内免费   3篇
测绘学   15篇
大气科学   8篇
地球物理   57篇
地质学   50篇
海洋学   8篇
天文学   38篇
综合类   3篇
自然地理   20篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   8篇
  2019年   3篇
  2018年   10篇
  2017年   4篇
  2016年   9篇
  2015年   6篇
  2014年   10篇
  2013年   12篇
  2012年   5篇
  2011年   10篇
  2010年   11篇
  2009年   18篇
  2008年   8篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  2001年   8篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   4篇
  1980年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
21.
The concentration of airborne spores of Cladosporium spp. and Alternaria spp. has been investigated at three monitoring stations situated along the west-north and central-east transect in Poland (Szczecin, Olsztyn, Warszawa,) i.e. from a height of 100 m to 149 m above sea level. The aerobiological monitoring of fungal spores was performed by means of three Lanzoni volumetric spore traps.Cladosporium spp. spores were dominant at all the stations. The highest Cladosporium spp. and Alternaria spp. numbers of spores were observed at all the cities in July and August.Statistically significant correlations have been found between the Cladosporium spp. and Alternaria spp. concentration in the air and the mean air temperature, amount of precipitation, air pressure and relative air humidity. The spore count of Cladosporium spp. and Alternaria spp. is determined by the diversity of local flora and weather conditions, especially by the air temperature. The identification of factors, which influence and shape spore concentrations, may significantly improve the current methods of allergy prevention.  相似文献   
22.
23.
This paper analyses winter severity and snow conditions in the Karkonosze Mountains and Jizera Mountains and examines their long-term trends. The analysis used modified comprehensive winter snowiness (WSW) and winter severity (WOW) indices as defined by Paczos (1982). An attempt was also made to determine the relationship between the WSW and WOW indices. Measurement data were obtained from eight stations operated by the Institute of Meteorology and Water Management – National Research Institute (IMGW–PIB), from eight stations operated by the Czech Hydrological and Meteorological Institute (CHMI) and also from the Meteorological Observatory of the University of Wroc?aw (UWr) on Mount Szrenica. Essentially, the study covered the period from 1961 to 2015. In some cases, however, the period analysed was shorter due to the limited availability of data, which was conditioned, inter alia, by the period of operation of the station in question, and its type.Viewed on a macroscale, snow conditions in the Karkonosze Mountains and Jizera Mountains (in similar altitude zones) are clearly more favourable on southern slopes than on northern ones. In the study area, negative trends have been observed with respect to both the WSW and WOW indices—winters have become less snowy and warmer. The correlation between the WOW and WSW indices is positive. At stations with northern macroexposure, WOW and WSW show greater correlation than at ones with southern macroexposure. This relationship is the weakest for stations that are situated in the upper ranges (Mount ?nie?ka and Mount Szrenica).  相似文献   
24.
This study describes warm spells in Northern Europe and determines the synoptic situations that cause their occurrence. In this article, a relatively warm day was defined as a day when the maximum temperature exceeded the 95th annual percentile, and a warm spell (WS) was considered to be a sequence of at least five relatively warm days. In the analysed multiannual period and within the investigated area, 24 (Kallax) to 53 (Oslo) WSs were observed. The occurrence of WSs was mainly connected with positive anomalies of sea level pressure and a 500-hPa isobaric surface, displaying the presence of high-pressure systems. This occurrence was also accompanied by positive T850 anomalies.  相似文献   
25.
26.
27.
Two significant volcanic eruptions, i.e., Eyjafjallajökull (April–May 2010) and Grímsvötn (May 2011) took place recently in Iceland. Within a few days after eruptions, layers of high aerosol concentration have been observed by multiwavelength lidar of the Polish Polar Station at Hornsund, Svalbard. Measurements of the aerosol’s optical properties indicated a possible presence of volcanic ash transported over the Station. The latter presumption was confirmed by the computed backward trajectories of air masses, showing their paths passing over the location of volcanoes.  相似文献   
28.
29.
A magnetic polarity pattern for Boreal and Sub-Boreal ammonite zones of the Upper Oxfordian to Lower Kimmeridgian was established and confirmed in four British sections, including the proposed Global Boundary Stratotype Section and Point (GSSP) on the Isle of Skye (Scotland) to define the base of the international Kimmeridgian Stage. A coeval pattern for Sub-Mediterranean ammonite zones was compiled from seven sections in Poland, one German section and multi-section composites from France and Spain. The mean paleopole for the European Craton (excluding Spain) at the Oxfordian–Kimmeridgian boundary is 74.2°N, 181.3°E (Α95 = 3.8°). The common magnetic polarity scale enables inter-correlation of ammonite subzones among these three faunal provinces and to the marine magnetic-anomaly M-Sequence. The proposed GSSP at the base of the Pictonia baylei Zone is near the base of an extended interval dominated by reversed polarity, which is interpreted to be Chron M26r. This GSSP level projects to the lower to middle part of the Epipeltoceras bimammatum Subzone, which is the middle subzone of this E. bimammatum Zone in the Sub-Mediterranean standard zonation. In contrast, the traditional placement of the Oxfordian–Kimmeridgian boundary in that Sub-Mediterranean standard zonation (base of Sutneria platynota Zone) is at the base of Chron M25r, or nearly 1 million years younger.  相似文献   
30.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号