首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3873篇
  免费   252篇
  国内免费   22篇
测绘学   238篇
大气科学   287篇
地球物理   1090篇
地质学   1429篇
海洋学   262篇
天文学   600篇
综合类   30篇
自然地理   211篇
  2023年   16篇
  2022年   33篇
  2021年   81篇
  2020年   84篇
  2019年   73篇
  2018年   212篇
  2017年   205篇
  2016年   270篇
  2015年   219篇
  2014年   237篇
  2013年   295篇
  2012年   238篇
  2011年   238篇
  2010年   214篇
  2009年   226篇
  2008年   163篇
  2007年   131篇
  2006年   113篇
  2005年   96篇
  2004年   102篇
  2003年   79篇
  2002年   90篇
  2001年   66篇
  2000年   56篇
  1999年   35篇
  1998年   63篇
  1997年   41篇
  1996年   34篇
  1995年   38篇
  1994年   35篇
  1993年   23篇
  1992年   27篇
  1991年   21篇
  1990年   30篇
  1989年   13篇
  1988年   16篇
  1987年   15篇
  1986年   7篇
  1985年   19篇
  1984年   7篇
  1983年   14篇
  1982年   18篇
  1981年   16篇
  1980年   15篇
  1978年   9篇
  1977年   12篇
  1975年   9篇
  1972年   13篇
  1971年   6篇
  1950年   7篇
排序方式: 共有4147条查询结果,搜索用时 31 毫秒
101.
102.
103.
Urban floods pose a societal and economical risk. This study evaluated the risk and hydro-meteorological conditions that cause pluvial flooding in coastal cities in a cold climate. Twenty years of insurance claims data and up to 97 years of meteorological data were analysed for Reykjavík, Iceland (64.15°N; <100 m above sea level). One third of the city's wastewater collection system is combined, and pipe grades vary from 0.5% to 10%. Results highlight semi-intensive rain (<7 mm/h; ≤3 year return period) in conjunction with snow and frozen ground as the main cause for urban flood risk in a climate which undergoes frequent snow and frost cycles (avg. 13 and 19 per season, respectively). Floods in winter were more common, more severe and affected a greater number of neighbourhoods than during summer. High runoff volumes together with debris remobilized with high winds challenged the capacity of wastewater systems regardless of their age or type (combined vs. separate). The two key determinants for the number of insurance claims were antecedent frost depth and total precipitation volume per event. Two pluvial regimes were particularly problematic: long duration (13–25 h), late peaking rain on snow (RoS), where snowmelt enhanced the runoff intensity, elongated and connected independent rainfall into a singular, more voluminous (20–76 mm) event; shorter duration (7–9 h), more intensive precipitation that evolved from snow to rain. Closely timed RoS and cooling were believed to trigger frost formation. A positive trend was detected in the average seasonal snow depth and volume of rain and snowmelt during RoS events. More emphasis, therefore, needs to be placed on designing and operating urban drainage infrastructure with regard to RoS co-acting with frozen ground. Furthermore, more detailed, routine monitoring of snow and soil conditions is important to predict RoS flood events.  相似文献   
104.
105.
Recent studies using water‐stable isotopes (δ18O and δ2H) have suggested an ecohydrological separation of water flowing to streams or recharging groundwater and water used by trees, known as the ‘two water worlds’ (TWW) hypothesis. In this study, we measured water isotopic composition in precipitation [open field and throughfall, i.e. local meteoric water line (LMWL)] and the mobile water compartment (i.e. stream and soil solution), bulk soil water and xylem water over a period of 1.5 years in two headwater catchments: NF, covered with old growth native evergreen forest (Aetoxicon punctatum, Laureliopsis philippiana and Eucriphya cordifolia), and EP, covered with 4 and 16‐year‐old Eucalyptus nitens stands. Our results show that precipitation, stream and soil solution plot approximately along the LMWL, while xylem waters from all studied tree species plot below the LMWL, supporting the TWW hypothesis. However, we also found evidence of ecohydrological connectivity during the wet season, likely controlled by the amount of antecedent precipitation. These observations hold for all investigated tree species. On both sites, a different precipitation source for stream and xylem water was observed. However, in EP, bulk soil showed a similar precipitation source as xylem water from both E. nitens stands. This suggests that E. nitens may use water that is recharging the bulk soil compartment. We conclude that under a rainy temperate climate, the TWW hypothesis is temporal and does not apply during wet seasons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
106.
This study investigated the Grabia River valley mire in central Poland to reconstruct its palaeoenvironmental conditions from the Younger Dryas to the present. We analysed sedimentological, biological and geochemical data from the palaeo‐oxbow lake and valley mire to identify the principal hydrological trends, especially episodes of high water level. During the Lateglacial and Holocene, the Grabia River had a meandering channel, and its hydraulic parameters and the channel dimensions changed in response to climatic oscillations and vegetation development. We identified phases of high flood intensity and high groundwater level that correlate with regional and supraregional climatic events. The frequency and timing of palaeohydroclimatic oscillations show strong similarities to records from other sites in Poland and the rest of Europe. We show that various analytical methods, namely, pollen, plant macrofossils, Cladocera, Chironomidae, sedimentological, geochemical and radiocarbon data, can be effective tools for reconstructing past hydroclimatic changes in palaeo‐oxbow lakes and investigating the effects of past climate changes on river environments. The high sensitivity of the biota, especially Cladocera, to changes in water level permits the reconstruction of palaeoecological changes, especially flood episodes that occurred in the river valley. In particular, the increase in the proportion of sediment‐associated Cladocera and pelagic taxa was closely correlated with floods. Through comparisons with the palaeobiological data, geochemical data allowed the identification of humid phases within the fen associated with a rising groundwater table, direct fluvial activity (floods) and alluvial deposition. We also discuss the limitations of palaeohydrological reconstructions based on these proxies, especially on fossil aquatic invertebrates.  相似文献   
107.
This paper focuses on pollen, spores, non‐pollen palynomorphs (NPPs) and certain geochemical elements from the ombrotrophic blanket bog of Zalama (Basque‐Cantabrian Mountains, northern Iberian Peninsula), with the support of a robust chronology based on 17 AMS 14C dates. The main results related to the last 8000 years show that, during the early middle Holocene, pines and deciduous forests were the most extensive tree formations. At the beginning of the succession, pines reach 44%, showing regional presence, whereas after 7600 cal. a BP, deciduous forests were particularly abundant. From c. 6500 cal. a BP the pollen diagram constructed from our samples shows the first anthropogenic evidence, linked with the new economic practices related to the Neolithic of the Basque‐Cantabrian Mountains. From 3300 cal. a BP the expansion of Fagus sylvatica is particularly clear, and has since then become one of the dominant forest species in this region. We also discuss the Holocene evolution of other noteworthy plant communities in southwestern Europe, such as Taxus baccata, Juglans and shrublands.  相似文献   
108.
109.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
110.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号